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1 Introduction

Motivation
There is now a broad consensus that the climate is changing and that this development
is linked to the increasing stock of greenhouse gases (GHGs) resulting from human
activity. Efforts to reverse this trend have not been successful because the international
coordination necessary to realize substantial cuts in emissions is proving to be nearly
impossible to achieve. This is due to a variety of reasons, but two particularly thorny
problems stand out.

First, lower emissions are a global public good. The severity of climate change depends
on the total stock of GHGs in the atmosphere; it is irrelevant where the emissions
take place, and the benefits of abatement accrue to all countries. Thus, the voluntary
abatement efforts of individual countries, if uncoordinated, will be below what is optimal
from a global perspective. In fact, there is no international authority with the power to
enforce desirable reductions in emissions. The result is the notorious free-rider problem:
countries may not participate in a treaty, or if they do, they may not deliver on their
promises.

Second, abatement costs and environmental damages are very difficult to predict. The
cost-benefit analysis of any climate policy is therefore subject to much uncertainty, and
finding the globally optimal level of emission reduction involves a great deal of guesswork.
Any binding target1, even an ex-ante optimal one, would turn out to be suboptimal
upon the arrival of new information. Only continuous renegotiation could incorporate
the steady trickle of new information, but this is impossible at an international level.
This is why policy-makers hesitate to agree to binding reductions in the first place.

The interplay of incentives to free-ride and the uncertainties about costs and benefits
make it particularly difficult to estimate, design, and implement a suitable climate policy.
This paper proposes a blueprint for a global climate treaty that would overcome these
challenges. We start from the principle that treaties should be confined to rules. Our main
insight is that there exists a set of rules that will allow new information on abatement
costs and environmental damages to be processed efficiently without the necessity of
renegotiating the treaty.
1 Suppose for the moment that we could prevent free-riding and enforce any binding emission reduction

target.
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In the remaining part of this introduction, we first discuss briefly the various uncertainties
that climate policy has to deal with. We proceed with a general description of the
model and introduce our proposed climate treaty, called the ‘Rules Treaty,’ and several
benchmark scenarios. Thereafter we show the major results. Finally, we outline the
organization of the rest of the paper.

Climate Policy Architecture and the Impact of Uncertainty
In 1992 and the years that followed, all major countries signed the Framework Convention
on Climate Change. All signatories acknowledge that dangerous interference with the
climate system has to be prevented. Thereafter, many proposals concerning the form of a
suitable policy architecture to achieve this goal have been put forward. Aldy et al. (2003)
define six criteria for assessing climate policy regimes: environmental outcome, cost-
effectiveness, dynamic efficiency2, equity, flexibility in the presence of new information,
and participation and compliance. They examine the performance of the Kyoto protocol,
which was drawn up in 1997, and a variety of other proposals in the light of these criteria.
Several results are worth highlighting. First, no proposal fulfills all criteria. Second,
in very few proposals is the provision of incentives for participation and compliance
considered. Third, there exists a fundamental tension between achieving efficiency and
promoting participation and compliance.

International permit markets with refunding have the potential to overcome these ten-
sions, and it gives participants the possibility of utilizing new information. In treaties
that do not allow the utilization of new information, this restriction on putting learning
to good use has in most cases an adverse effect on coalition formation (Dellink et al.,
2007). This is especially relevant for climate change policy, since there are still tremen-
dous uncertainties. We will now briefly show why this is the case.

The current generation has to start planning and paying for emission abatement, but
most of the potential damage caused by climate change will have to be borne by future
generations. It is, however, difficult to determine what sacrifices should be made today
in order to reduce damage in the future, since the valuation of the damage and the
abatement costs is highly controversial. Figure 1 displays the causal chain from GHG
emissions to the economic valuation of global damage at each date. Each and every link
involves uncertainty, and together they add up to an immense uncertainty regarding

2 An efficient climate policy is by definition both cost-effective and environmentally optimal.
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Figure 1: Multiple uncertainties in the economic valuation of environmental damage
caused by GHGs emissions: every link in the causal chain is associated with
uncertainties

damage. Links 1 to 3 involve uncertainties because the complexities of the earth system
hinder predictions with small confidence bounds (Solomon et al., 2007). Link 4 has to do
with the extent and effectiveness of changes in behavior and adaptation measures. Link
5 involves valuing these changes. Finally, aggregation across regions and generations
is required, a step that involves value judgments about the distribution of real living
standards at any point in time and the weights to be assigned to different generations.
This is a matter on which there is much disagreement (see e.g. Stern (2007), Nordhaus
(2007), Ackerman et al. (2009)). Abatement costs are somewhat less uncertain. Estimates
depend mainly on the predicted speed of technological change and its impact on costs
and the availability of technologies for reducing emissions or storing GHGs (Metz et al.,
2007).

The Approach
The model is a variant of Gersbach and Winkler (2011) who have introduced interna-
tional permit markets with refunding of revenues in permit auctions. The first mod-
ification is to allow the international agency to rescale the total number of permits;
the second is to introduce uncertainty. To model the effects of uncertainty, we use the

State of the world

   is realized

    Actions

    (ex-post)

Treaty/ No treaty

   (ex-ante)

Figure 2: General sequence of events

3



time-line depicted in Figure 2. During climate-treaty negotiations (ex-ante) only the
probabilities and the state space of environmental damage and abatement costs in each
country are known. After the negotiations, uncertainty is resolved. Actions and outcomes
(distribution and trading of permits, emission choices, damage, etc.) take place under
complete information (ex-post).

Benchmarks Scenarios and the Rules Treaty
In the paper we will first define the ‘Global Social Optimum’ as the outcome which
minimizes total global costs in each state of the world (ex-post optimality).

Next, we will describe three different outcomes of international coordination (or non-
coordination): the ‘No-Treaty Outcome’, the ‘Target Treaty’ and the Rules Treaty. All
of them assume that an international permit market for GHG emissions is in place, and
countries distribute a certain number of permits to domestic firms. Firms may, in turn,
trade their permits. The initial distribution of permits is the essential difference among
the three different outcomes. They can be described as follows:

The No-Treaty Outcome is the non-cooperative solution in which countries freely choose
the number of permits they will distribute to domestic firms. It also serves as the outside
option for all parties during treaty negotiations.

Under the (ideal) Target Treaty, signatories cooperate fully; they fix the total number of
permits at a level such that, for them, it is ex-ante optimal. This total is then distributed
among member countries. The total number of permits and the distribution cannot be
renegotiated ex-post and countries fully comply. This (ideal) Target Treaty serves as a
benchmark, as it represents the best possible treaty involving fixed targets.

The Rules Treaty works as follows: The permit market is administered by an international
agency and obeys a set of rules negotiated by the participating countries. The rules
comprise a scaling factor and country-specific refunding shares. After the Rules Treaty
has come into force, participants can freely choose the number of emission permits they
allocate to domestic firms. For every permit a country issues, the international agency
is allowed to issue additional permits in accordance with the scaling factor. The agency
auctions its permits to member countries’ firms and reimburses all its revenues to member
countries in line with the refunding shares.
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Results
We will obtain two major insights regarding the Rules Treaty.

First, it allows the processing of new information, as it fixes rules but not the number
of permits. Thus, the countries will be able, and willing, to adjust their permit issuance
when they receive new information on damages or abatement costs.3 This is in stark
contrast to treaties based on fixed targets, like our Target Treaty.

For large scaling factors, information processing is almost optimal under a Rules Treaty.
The reason is that global costs decrease with the scaling factor, and approach the Global
Social Optimum in each state of the world when scaling factors become large. This seems
to be counterintuitive at first, and we will devote a large part of the paper to prove the
result and to provide the intuition (see e.g. Section 5.2).

Second, the Rules Treaty can be designed to induce voluntary participation, i.e. all coun-
tries are better off ex-ante if they participate than by choosing the outside option. This
can be achieved by selecting a refunding rule that compensates those countries with
high expected abatement costs and low expected damages for making higher abatement
efforts under the treaty than they would make under the outside option. This compen-
sation is feasible, since expected global costs will be lower under a Rules Treaty with a
strictly positive scaling factor.4

These two features of the Rules Treaty combine to prevent free-riding altogether if the
scaling factor is sufficiently high. The first implies incentive compatibility and the second
that participation is individually rational.

Against the above advantages there is the drawback that arriving at a Rules Treaty
might be difficult or even impossible if countries are rather heterogeneous. Hence, Rules
Treaties are more likely to come about among groupings like the EU.

Organization of the Paper
The remainder of the paper is organized as follows: In Section 2 we describe the set-up
of the model. In Section 3 we define and derive closed-form solutions for the Global
Social Optimum and the No-Treaty Outcome. The same is done for the Target and

3 Information that reveals higher marginal damages or lower marginal abatement costs, for instance,
will typically induce countries to tighten permit issuance.

4 Our outside option, the No-Treaty Outcome, corresponds to a degenerate Rules Treaty with a scaling
factor of zero. In addition, global costs decrease with the scaling factor.
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Rules Treaties, respectively, in Sections 4 and 5, followed by a comparison in Sections 6.
Section 7 examines one way in which the formation of the Rules Treaty could be modeled.
Section 8 discusses the parties’ behavior under the treaties when extreme events occur.
Section 9 summarizes the results, proposes some promising extensions, and draws more
general conclusions.

2 The Model

2.1 Set-up

We consider a model of a global economy with n politically autonomous countries indexed
by i = 1, . . . , n and run by a local planner. In each country i, GHG emissions ei > 0
arise from the activity of a representative firm, which faces a country-specific abatement
cost Ci(ei):

Ci(ei) = 1
2φ

ωφ

i

(ēi − ei)2, ei ∈ (0, ēi), φ
ωφ

i > 0, i = 1, . . . , n. (1)

The abatement cost function describes the costs the firm incurs to reduce emissions.
There are no abatement costs for ei = ēi, which are business-as-usual emissions. φ

ωφ

i

is the abatement cost parameter of country i. It depends on some aggregate event ωφ,
which can take on two values: ωφ ∈ Ωφ := {hφ, lφ}. The value hφ(lφ) indicates that
abatement cost are high (low) in all countries, that is φ

hφ

i < φ
lφ
i for all i. The aggregate

events hφ and lφ occur with probability π and 1 − π, respectively. Constant parameter
ratios are a special case. There, for all i, φ

lφ
i = λφφ

hφ

i for some real number λφ > 1 .

The sum of all business-as-usual emissions across countries is denoted by Ē with Ē =
∑n

i=1 ēi, and the global emissions are E =
∑n

i=1 ei. Without loss of generality we nor-
malize the initial global stock of GHGs to zero. Global emissions cause country-specific
environmental damages, Di(E), in each country, referred to as “damages”, so that

Di(E) = β
ωβ

i

2 E2, β
ωβ

i > 0, i = 1, . . . , n . (2)

β
ωβ

i is the damage parameter of country i that depends on a second aggregate event
ωβ, which can also take on two values: ωβ ∈ Ωβ := {hβ, lβ}. Value hβ(lβ) indicates that
damages in all countries are high (low), i.e. β

hβ

i > β
lβ
i for all i. The aggregate events hβ
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and lβ occur with probability σ and 1 − σ, respectively. Constant parameter ratios are
a again a special case. There, for all i, β

hβ

i = λββ
lβ
i for some real number λβ > 1.

To describe the entire set of possible aggregate events, we define Ω = Ωφ x Ωβ =
{(lφ, lβ), (hφ, lβ), (lφ, hβ), (hφ, hβ)}. We use ω = (ωφ, ωβ) with ω ∈ Ω to denote a state of
the world. Prob(ω) is the probability that ω will occur (∑ω∈Ω Prob(ω) = 1). A special
case is stochastically independent aggregate events ωφ and ωβ. The probabilities are
given in Table 1:

hβ lβ
hφ πσ π(1 − σ)
lφ (1 − π)σ (1 − π)(1 − σ)

Table 1: Probabilities of states of the world if aggregate events are stochastically
independent

We assume that the probabilities and the values β
ωβ

i and φ
ωφ

i for all states of the world
and all countries are common knowledge. Furthermore, once the aggregate events have
been realized, the state of the world is also common knowledge.

To shorten the notation we will henceforth write φω
i instead of φ

ωφ

i and βω
i instead of

β
ωβ

i if ω = (ωφ, ωβ) occurs. The use of the superscript ω will apply in the same way to
other variables as well.

2.2 International Permit Market

As a building block for our analysis, we introduce an international permit market in
the sense of Helm (2003), coupled with refunding in the sense of Gersbach and Winkler
(2011), which operates after the aggregate events have occurred. In this and the next
subsection, there is no administrative agency issuing additional permits, and we take
the amount of emission permits each country has issued in state ω, ǫω

i , as given. Later,
ǫω
i will be endogenized. The total number of permits Eω = ∑n

i=1 ǫω
i is supplied in the

market. For the functioning of the permit market, only Eω will matter. The possibility
of trade guarantees that emission reductions will be cost effective.
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Cost minimization behavior by the representative firms implies that in each country the
marginal abatement costs will equal the permit price, pω, in each state ω:

pω = −∂Ci

∂eω
i

= 1
φω

i

(ēi − eω
i ), i = 1, . . . , n . (3)

Market clearing requires that the total number of permits equal global emissions:

Eω =
n∑

i=1
ǫω
i =

n∑

i=1
eω

i = Eω. (4)

To calculate the permit price in the permit market equilibrium for state ω, we sum
equations (3) over all countries and obtain

pω =
∑n

i=1 ēi −∑n
i=1 eω

i∑n
i=1 φω

i

= Ē − Eω

Φω
, (5)

where Φω := ∑n
i=1 φω

i is referred to as the aggregate abatement cost parameter in state
ω.

2.3 Global costs

For later use we devise expressions for global costs when international permit markets
are present. For any particular state ω, we use cost minimization behavior by the firm,
given by Equation 3, to rewrite optimal chosen abatement costs (Equation 1) in terms
of the permit price:

Cω
i (pω) = φω

i

2 (pω)2. (6)

The sum of all abatement costs and damages across countries in a state ω are the global
costs, denoted by Kω. Using Equations (2) and (6), we can express global costs in terms
of the permit price and the total number of permits.

Kω =
n∑

i=1

φω
i

2 (pω)2 +
n∑

i=1

βω
i

2 (Eω)2, and (7a)

Kω = Φω

2 (pω)2 + Bω

2 (Eω)2, (7b)

where Bω := ∑n
i=1 βω

i is referred to as the aggregate damage parameter.
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Furthermore, the expected global cost, E[K], is given by

E[K] =
∑

ω∈Ω
Prob(ω)

[Φω

2 (pω)2 + Bω

2 (Eω)2
]

. (8)

3 Global Social Optimum and No-Treaty Outcome

In this section we derive the Global Social Optimum (SO) and the No-Treaty Outcome
(NT). They serve as benchmark scenarios for the treaties we will introduce in the next
section. The No-Treaty Outcome occurs when no negotiation has taken place or negoti-
ations have failed, as countries can still operate an international permit market in such
cases. It serves as the outside option, i.e. it establishes the level of costs countries have
to undercut in order to be willing to participate in a treaty extending beyond the mere
presence of an international permit market. Note that both the global social planner and
participants in the permit market act after the state of the world has been realized.

Throughout the paper we focus on the interior solutions, in the sense that no country
will choose ei = 0 and reduce all emissions. Corner solutions of the type ei = ēi cannot
occur, as in such a case marginal costs of abatement are zero, while marginal damages
are positive.

3.1 Global Social Optimum

The sequence of events in the Global Social Optimum is shown in Figure 3. In every state

- state of the world

  is realized

- social planner sets emission

  levels to minimize K
ω

- damages occur

Figure 3: Sequence of events in the Global Social Optimum

ω, a social planner ex-post minimizes global costs, Kω, with respect to the emissions of
countries, eω

i . Using Equations (1) and (2), the problem is given by

min
{eω

i }n
i=1

n∑

i=1

[
1

2φω
i

(ēi − eω
i )2 + βω

i

2 (Eω)2
]

, (9)
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subject to ∑n
i=1 eω

i = Eω.

The necessary first-order conditions are

1
φω

i

(ēi − eω
i ) = BωEω i = 1, . . . , n. (10)

The first-order conditions say that in the Global Social Optimum, the cost of abating
an additional unit of emissions in a country i (LHS) has to equal the global damages
caused by that additional unit (RHS).

Proposition 1 (Global Social Optimum)
In the Global Social Optimum, in every state of the world ω, the uniquely determined
values of global emissions, ESO,ω, and local emissions, eSO,ω

i , are

ESO,ω = Ē

1 + BωΦω
, and (11a)

eSO,ω
i = ēi − φω

i

BωĒ

1 + BωΦω
, i = 1, . . . , n. (11b)

The proof is given in Appendix B.

We note that the Global Social Optimum can also be implemented by distributing any
vector of emission permits {ǫω

i }n
i=1 to countries such that ∑n

i=1 ǫω
i = ESO,ω and by letting

countries trade in the international permit market. In this case, the equilibrium price
amounts to

pSO,ω = BωĒ

1 + BωΦω
.

To rule out infeasible solutions, emissions as determined by Equation (11b) must not be
negative. For the remainder of the paper, we therefore assume

Assumption 1
For all countries i = 1, . . . , n and all states ω the following condition holds:

ēi ≥ φω
i

BωĒ

1 + BωΦω
.
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3.2 No-Treaty Outcome

3.2.1 Description

The sequence of events in the No-Treaty Outcome is shown in Figure 4:

- state of the world

  is realized

- permit market is set up

- countries distribute permits 

  to firms

- firms choose emission levels 

  and trade permits

- damages occur

- no treaty

Figure 4: Sequence of events in the No-Treaty Outcome

After the state of the world has been realized, the local planner in each country is free
to issue any amount of emission permits, ǫω

i , which he distributes to the representative
firm free of charge5. Given the total supply of permits, the equilibrium price is obtained
via Equation (5), and the firms choose their emissions, eω

i , according to Equation (3).
Firms buy or sell permits on the permit market such that the number of permits they
hold matches their emissions.

3.2.2 Equilibrium Notation

At this stage, it is useful to differentiate the equilibrium notions used in the paper. In each
state of the world, an equilibrium in the international permit market is characterized
by a price of permits at which supply equals demand. An overall equilibrium for the
No-Treaty case (henceforth equilibrium) is characterized by

• the Nash equilibrium of the local planners’ permit choices,

• the abatement decisions by firms (taking permit prices as given), and

• market clearing.

5 The permits could also be auctioned by the local planner. It is well known that auctioning does not
affect the cost-minimizing emission choice of firms and the total costs of a country if markets for
permits are competitive. It only affects the internal distribution of costs and benefits within each
country between the public and firms.
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3.2.3 Equilibrium Characterization

Each country i chooses a number of permits, ǫω
i , in such a way as to minimize local costs.

This is the sum of the firm’s abatement costs, local damage, and the cost arising from
permit trading. It takes the permit choices of the other countries, ǫω

j 6=i, as given.

min
ǫω

i

[
φω

i

2 (pω)2 + βω
i

2 (Eω)2 + pω(eω
i − ǫω

i )
]

, i = 1, . . . , n, (12)

subject to (3), (4), and (5). We use the following derivatives:

dpω

dǫω
i

= ∂pω

∂Eω

dEω

dǫω
i

= − 1
Φω

(1), and

deω
i

dǫω
i

= ∂eω
i

∂pω

dpω

dǫω
i

= −φω
i (− 1

Φω
) = φω

i

Φω
,

and obtain the necessary first-order conditions:

− φω
i

Φω
pω + βω

i Eω − 1
Φω

(eω
i − ǫω

i ) − pω(1 − φω

Φω
) = 0, i = 1, . . . , n. (13)

The four terms represent various effects on the costs of a country i if it issues one more
permit.6

1. − φω
i

Φω pω: decrease of the firms’ abatement costs. As there is one more permit in
the market, the firm will increase its emissions by deω

i
dǫω

i
= φω

i
Φω . Its abatement costs

decrease by the marginal abatement costs multiplied by the increase in emissions.

2. +βω
i Eω: increase in local damages. One more permit causes an equivalent increase

of global emissions.

3. − 1
Φω (eω

i − ǫω
i ): change in trade revenues. The permit price decreases by 1

Φω . The
firm has to pay less for the permits it needs to cover its emissions, eω

i , but it
also receives less for the permits it sells, ǫω

i . Depending on whether the firm is a
net seller (eω

i < ǫω
i ) or buyer (eω

i > ǫω
i ) of permits, the revenues will decrease or

increase, respectively.

4. −pω(1 − φω

Φω ): value of the remainder of the additional permit. From the one ad-
ditional permits it receives, the firm needs the fraction φω

Φω to cover its additional

6 To simplify presentation, we represent the marginal effects by the issuance of one more permit. We
are aware that this is not exactly a marginal change.
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emissions, and it sells the remaining fraction (1 − φω

Φω ) at price pω.

Note that the first and fourth effect sum up to pω and the net benefit for country i from
the first and the fourth effect is simply the value of the additional permit. Hence, we
can rewrite the first-order conditions (13) as

pω − 1
Φω

(ǫω
i − eω

i ) = βω
i Eω, i = 1, . . . , n. (14)

The marginal benefits of issuing a permit (LHS) equal the local marginal damages (RHS).

Proposition 2 (No-Treaty Outcome)
We obtain a unique equilibrium of the No-Treaty Outcome in each state ω as a vector of
permit issuance {ǫNT,ω

i }n
i=1 and the associated total number of permits, ENT,ω, the permit

price, pNT,ω, a vector of country specific emissions, {eNT,ω
i }n

i=1 and costs, {KNT,ω
i }n

i=1,
given by

ENT,ω = Ē

1 + β̄ωΦω
, (15a)

pNT,ω = BωĒ

n + BωΦω
, (15b)

eNT,ω
i = ēi − pNT,ωφω

i , i = 1, . . . , n, (15c)

ǫNT,ω
i = ēi − pNT,ωΦω( φω

i

Φω
+ βω

i − β̄ω

β̄ω
), i = 1, . . . , n, and (15d)

KNT,ω
i = φω

i

2 (pNT,ω)2 + βω
i

2 (ENT,ω)2 + pNT,ω[eNT,ω
i − ǫNT,ω

i ], i = 1, . . . , n. (15e)

β̄ω := 1
n

∑n
i=1 βω

i is the average damage parameter. The proof is given in Appendix B.

The difference between country-specific emissions and permit issuance in equilibrium is

eNT,ω
i − ǫNT,ω

i = pNT,ωΦω βω
i − β̄ω

β̄ω
. (16)

Analogous to the findings in Helm (2003), countries with damage parameters lower than
the average are net sellers and vice versa.

With regard to permit issuance, two polar cases could happen in theory. First ǫNT,ω
i >

ēi, so that a country issues more permits than its business-as-usual emissions. Second,
ǫNT,ω
i < 0 which means that a country destroys permits in order to reduce the global

supply of permits. We allow for both polar cases.
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Comparing Equations (15a) and (11a), we observe the standard result that the total
emissions chosen by countries are higher than in the Global Social Optimum. The No-
Treaty Outcome is inefficient, as the local planner of a country does not take into account
other country’s damages when choosing the number of permits.

3.2.4 Free-rider Problem

To illustrate the free-rider problem further, let us take k replica of the economy with n

countries each. In this case, the total number of permits in the No-Treaty Outcome and
the total emissions in the social optimum are given by

ENT,ω = Ē
1
k + β̄ωΦω

, and

ESO,ω = Ē
1
k + kBωΦω

.

In the limit, as k approaches infinity, the socially optimal emissions are zero, whereas
global emissions approach a constant greater than zero in the No-Treaty Outcome.

3.3 Participation Constraint

In this paper we discuss two treaties. A country signs a treaty voluntarily if the expected
cost of participating is lower than in the ex-ante outside option, which we assume to be
the No-Treaty Outcome. Essentially, every country is pivotal on whether a treaty is
formed or not because both treaties require unanimous agreement to be put into force.
This represents the most favorable scenario for achieving consensus on forming a treaty.
If this participation constraint is fulfilled for all countries, we call a treaty implementable:

Definition 1 (Implementable Treaty)
A treaty is implementable if, for each country i = 1, . . . , n, the expected cost of partici-
pating in the treaty is no higher than in the No-Treaty Outcome.

3.4 Example

Throughout the paper, we will illustrate the outcomes with an example. We consider
three countries. Table 2 summarizes their parameters.
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Country Business-as-usual Abatement Damage
i ēi φ

hφ

i φ
lφ
i β

hβ

i β
lβ
i

1 60 0.2 0.7 0.6 0.3
2 70 0.4 0.8 0.7 0.35
3 80 0.6 0.9 0.7 0.45

Probabilities 50% 50% 50% 50%

Table 2: Parameters of our example

The aggregate events are assumed to be stochastically independent and occur with prob-
ability 1

2 . Hence, each event ω = (ωφ, ωβ) occurs with probability 1
4 .

Figure 5 shows that in the No-Treaty Outcome all firms emit more GHGs than in the
Global Social Optimum. However, they issue fewer permits than their business-as-usual
emissions. Country 1’s damage parameter is below average and, according to Equation
16, its firm is a net seller of permits. Abatement, ēi − eNT,ω

i , by the firm in country 1 is
half of country 2’s firm and a third of country 3’s firm, which reflects the difference in
the abatement cost parameters (Equation 15c).

4 Target Treaty

Fixed targets are the approach taken by the currently most important attempt to slow
down climate change: the UNFCCC process, including the Kyoto Protocol. In this sec-
tion, we present our model of such a type of treaty, the Target Treaty (TT). We assume
that the Target Treaty minimizes expected global costs. Correspondingly, it is an ‘opti-
mal’ Target Treaty. This assumption is not made to reflect the state of current target
treaties such as the Kyoto Protocol. Instead, the optimal Target Treaty serves as a
benchmark, as it represents the best solution that can be achieved if countries commit
to emission reduction targets.

4.1 Treaty Description

The sequence of events and functions is shown in Figure 6. Target Treaty negotiations
take place before the state of the world has been realized. This reflects the fact that
once countries have agreed on targets, continuous renegotiation after the arrival of new
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Figure 5: No-Treaty Outcome in state of the world ω = (hφ, hβ). The black curves
display the local cost for a country i (see cost function (12)) in the No-Treaty
Outcome, given that the other countries choose permits at the equilibrium
levels. The minima of the local cost curves represent the equilibrium. Black
vertical lines are the equilibrium permit issuance and red vertical lines are
the equilibrium emissions. Blue vertical lines are the emissions in the Global
Social Optimum. The ends of the abscissas correspond to business-as-usual
emissions.

information is impossible. During the negotiation, stage an ex-ante optimal total number
of permits, ET T , is determined. Countries receive permits according to an allocation,{

ǫT T
i

}n

i=1
, such that ∑n

i=1 ǫT T
i = ET T . Formally we define the Target Treaty as follows:

Definition 2 (Target Treaty)
A Target Treaty (TT) is an aggregate number of permits ET T and an allocation of emis-
sion permits

{
ǫT T
i

}n

i=1
, with ∑n

i=1 ǫT T
i = ET T . ET T minimizes expected global costs.
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- state of the world

  is realized

- permit market is set up

- countries allocate permits to firms

- firms choose emission levels

  and trade permits 

- damages occur

- Target Treaty

  

Figure 6: Sequence of events in the Target Treaty

For the purpose of this paper, we assume that the Target Treaty is binding.

Assumption 2
The allocation of emission permits

{
ǫT T
i

}n

i=1
is binding for all countries and in all states

of the world.

This assumption implies that in any state of the world, the number of permits countries
give to its firms cannot exceed or fall below ǫT T

i . The former implies complete enforce-
ability of the permit allocation. The latter could in principle happen if, e.g., a country
in a particular state is highly affected by climate change and therefore wants to lower
the aggregate number of permits by not using part of its allocation. We rule out this
possibility, as it only occurs in extreme cases or with few and heterogeneous countries
participating in the treaty.7 In Section 8 we will discuss cases in which targets are not
exhausted by countries when an extreme event happens.

In the following, we first illustrate the ex-ante design of the Target Treaty and later
derive solutions for the ex-post stage.

4.2 Ex-ante: Design of the Target Treaty

In this section we determine the ex-ante globally optimal number of permits, ET T , and
discuss implementable permit allocations.

7 The derivation of the ex-ante optimal target becomes much more cumbersome if ex-ante the potential
destruction of permits in some extreme event has to be taken into account. If countries are homoge-
neous, a sufficient condition that targets are binding in all events is

πλφ + 1 − π ≤ n(σ + 1 − σ

λβ
).

This condition is always satisfied if the number of countries is sufficiently large.
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4.2.1 Total Number of Permits

Suppose there is a designer seeking to minimize the expected global cost E[KT T ] (see
Equation (8)) with respect to E , the total number of permits:

min
E

∑

ω

{
Prob(ω)[Φ

ω

2 (pω)2 + Bω

2 E2]
}

, (17)

subject to Equation (5).

The necessary condition is
∑

ω

{Prob(ω)[−pω + BωE ]} = 0.

As the objective function (17) is strictly convex, the necessary condition is also sufficient.
We use Equation (5) and the assumption that the aggregate events are independent to
determine the unique ET T :

ET T = ĒA

D + A
, (18)

where D := σBh + (1 − σ)Bl and A := ( π
Φh + 1−π

Φl ).8

Using Equations (5) and (8) , the expected global cost in the Target Treaty, E[KT T ],
amounts to

E[KT T ] = A

2

(
ĒD

D + A

)2

+ D

2

(
ĒA

D + A

)2

.

4.2.2 Allocation of Permits

Apart from the feasibility constraint ∑n
i=1 ǫT T

i = ET T , the determination of ET T does
not pin down the country-specific allocation of permits, ǫT T

i . An example of a feasible
allocation is a Target Treaty denoted by T̃ T , such that for each country the permit
allocation equals the expected emissions in the Global Social Optimum:

ǫT̃ T
i = E[eSO

i ] = E[ēi−
ĒD

(D + A)Φφi] = ēi−
ĒD

D + A

(
σφh

Φh
+ (1 − σ)φl

Φl

)
, i = 1, . . . , n.

8 If there is no uncertainty (e.g. π = σ = 0), Equation (18) collapses to Equation (11a).
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For the purpose of this paper we do not need to model the detailed process of how permits
are allocated across countries. It is nevertheless useful to show the set of implementable
Target Treaties. It is characterized by the following condition:

E[KT T
i (ǫT T

i )] ≤ E[KNT
i ], ∀ i = 1, . . . , n, (19)

where E[KT T
i (ǫT T

i )] and E[KNT
i ] are the expected cost for country i in a Target Treaty

with permit allocation ǫT T
i and in the No-Treaty Outcome, respectively. We obtain the

following lemma:

Lemma 1 (Implementable Target Treaty)
There exists an implementable Target Treaty if and only if the expected global cost of the
Target Treaty is no higher than in the No-Treaty Outcome, i.e. if and only if E[KT T ] ≤
E[KNT ].

The proof of Lemma 1 is standard and given in Appendix B. The intuition is straightfor-
ward. Once a treaty is globally less costly than the outside option and the redistribution
of permits (i.e. costs) across countries does not generate frictions, the treaty is ex-ante
implementable.9

4.3 Ex-post Outcome

In what follows, we consider the solution under a Target Treaty once the state of the
world has been realized. The overall equilibrium corresponds to the equilibrium in the
international permit market, as the amount of permit the countries’ local planner dis-
tribute to their firms is fixed according to the allocation

{
ǫT T
i

}n

i=1
. The allocation is

independent of the state of the world. The equilibrium permit price, however, depends
on this state.10 Combining (5) and (18), we obtain

pT T,ω = ĒD

(D + A)Φω
. (20)

9 We note that T̃ T might not be implementable.
10 The price only depends on the aggregate event ωφ.
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Given the price, firms choose the equilibrium level of emissions, eT T,ω
i , in accordance

with Equation (3):

eT T,ω
i = ēi − ĒD

(D + A)Φω
φω

i , i = 1, . . . , n. (21)

Inspection of Equation (21) shows that emissions are independent of the permit alloca-
tion.

Assumption 1 does not suffice to guarantee that emissions as determined by Equation
(21) do not fall below zero. To ensure eT T,ω

i is non-negative, we assume for the remainder
of the paper:

Assumption 3
For all countries i = 1, . . . , n and all states ω, the following condition holds:

ēi ≥ ĒD

(D + A)Φω
φω

i .

We sum up the properties of the Target Treaty in the following proposition:

Proposition 3 (Target Treaty)
In a Target Treaty, the total number of permits, ET T , is given by Equation (18). There
exists a set of implementable permit allocations

{
ǫT T
i

}n

i=1
if E[KT T ] ≤ E[KNT ]. In

equilibrium, the permit price pT T,ω in each state ω is given by (20), the vector of country-
specific emissions {eT T,ω

i }n
i=1 is determined according to (21) and costs {KT T,ω

i }n
i=1 are

given by

KT T,ω
i = φω

i

2 (pT T,ω)2 + βω
i

2 (ET T )2 + pT T,ω(eT T,ω
i − ǫT T

i ), i = 1, . . . , n.

Finally, we observe that in general ET T is not ex-post optimal.

Lemma 2 (Target Treaty does not Implement Global Social Optimum)
If there is uncertainty about the damage and abatement cost parameters, there exists no
Target Treaty that can implement the Global Social Optimum.

The proof of Lemma 2 is given in Appendix B. The intuition is as follows: under a Target
Treaty emission reductions are fixed before the state of the world is known. Hence when
new information arrives, countries are not able to react but have to stick to the old,

20



now suboptimal, reduction targets. This is a severe disadvantage of all treaties involving
fixed targets.

4.4 Example

We illustrate the properties and potential problems of the Target Treaty using the numer-
ical example introduced in Section 3.4.11 Figure 7 shows the ex-ante globally optimal
number of permits, ET T , and the ex-post globally optimal level of emissions in each
state of the world, ESO,ω. We observe that the Target Treaty is not ex-post optimal. In
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Figure 7: The black curves depict the global costs in the four different states. The vertical
lines show emissions in the Global Social Optimum (black) and the Target
Treaty (green).

the state ω = (hφ, lβ) abatement costs are high and damages low. Hence, the optimal
11 The parameters fulfill Assumptions 2 and 3.
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global emissions, ESO,(hφ,lβ), are rather high, and ET T is too low. By contrast in state
ω = (lφ, hβ) abatement costs are low and damages high. ESO,(lφ,hβ) is rather low, and
ET T is too high. In the other two states, these two effects partly cancel out and ET T is
quite close to the Global Social Optimum.

5 Rules Treaty

In this section, we discuss our proposal for a climate treaty, the Rules Treaty. We start
by describing how it functions, then we present the equilibrium in the ex-post stage and
highlight the advantages of the Rules Treaty. Finally, we discuss treaty formation in the
ex-ante stage.

5.1 Treaty Description

Figure 8 shows the functioning and sequence of events in the Rules Treaty.

- state of the world

  is realized

- permit market is set up

- countries choose permits and

  allocate to firms

- agency issues additional permits

- firms choose emission level, 

  trade permits and buy

  from the agency 

- countries receive refund

- damages occur

- Rules Treaty 

   

Figure 8: Sequence of events in the Rules Treaty

It is similar to the No-Treaty Outcome in that countries can freely select the number of
permits, ǫω

i , once the state of the world is realized. However, there are two important
differences.

First, there exists an international agency that is entitled to issue an additional number of
permits Eω

A = γ
∑n

i=1 ǫω
i = γEω

C , where γ ∈ [0, ∞) is called the scaling factor. Eω
C denotes
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the aggregate number of permits issued by the countries. Hence, the total number of
permits in the market is Eω

T = Eω
A + Eω

C = (1 + γ)Eω
C .

Second, the agency sells its permits to the firms. The revenues generated are fully re-
funded to the countries according to a refunding rule {ρi}n

i=1, with
∑n

1=1 ρi = 1. ρi is the
share of the agency’s revenues refunded to country i. The refunding rule does not depend
on the abatement efforts of countries and is independent of the state of the world.

The crucial difference between the Rules Treaty and the Target Treaty is the following:
During negotiations, in the Rules Treaty countries only fix the scaling factor and the
refunding rule. In the Target Treaty, by contrast, emission targets are fixed.

Formally, we define the Rules Treaty as follows:

Definition 3 (Rules Treaty)
A Rules Treaty (RT) consists of the following set of parameters: {γ, {ρi}n

i=1}. γ ∈ [0, ∞)
is the scaling factor, and {ρi}n

i=1, with
∑n

1=1 ρi = 1, is the refunding rule.

In the following, we explore the functioning of the Rules Treaty and work backwards to
solve for an implementable and optimal Rules Treaty.

1. Ex-post: Permit issuance: Upon realization of the state of the world ω, each country’s
local planner chooses a number of permits, given γ and {ρi}n

i=1.

2.Ex-ante: Design of the Rules Treaty: During negotiations, countries set up a Rules
Treaty {γ, {ρi}n

i=1} that has to be implementable and minimizes the expected global
cost.

5.2 Ex-post Outcome

In this section, we describe the overall equilibrium (henceforth ‘equilibrium’) in each
state of the world for the Rules Treaty. It is defined by the same three components
(Nash equilibrium of the local planners’ permit choices, abatement decisions of firms,
market clearing) as those introduced in Section 3.2 for the No-Treaty Outcome.
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5.2.1 Equilibrium Characterization

In every state ω, each country i receives a refund, rω
i , according to its share, ρi, of the

revenues the agency generates by selling permits. It is given by

rω
i = ρip

ωγEω
C .

Each country i chooses a number of permits, ǫω
i , to minimize its local costs, taking the

permit choices of the other countries, ǫω
j 6=i, as given.

min
ǫω

i

[
φω

i

2 (pω)2 + βω
i

2 (Eω
T )2 + pω(eω

i − ǫω
i ) − ρiγpωEω

C

]
, i = 1, . . . , n, (22)

subject to Equation (3), Eω = Eω
T = (1+γ)∑n

i=1 ǫω
i and pω = Ē−Eω

T
Φω . We use the following

derivatives:

dpω

dǫω
i

= ∂pω

∂Eω
T

dEω
T

dǫω
i

= − 1
Φω

(1 + γ), and

deω
i

dǫω
i

= ∂eω
i

∂pω

dpω

dǫω
i

= −φω
i (−1 + γ

Φω
) = (1 + γ) φω

i

Φω
,

and obtain the necessary first-order conditions for a cost minimum:

− (1 + γ) φω
i

Φω
pω + (1 + γ)βω

i ET
ω − (1 + γ)

Φω
(eω

i − ǫω
i ) − pω

(
1 − (1 + γ) φω

i

Φω

)

− ρiγpω + ρi
1 + γ

Φω
γEω

C = 0, i = 1, . . . , n.

(23)

The six terms represent various effects on the costs of a country i if it issues one more
permit.12 Effects 1-4 can be interpreted in the same way as in the No-Treaty Outcome,
but they are amplified by the scaling factor. The new effects 5 and 6 are due to refunding.

1. −(1 + γ) φω
i

Φω pω: the decrease of the firms’ abatement costs. As there are (1 + γ)
more permits in the market, the firm increases its emissions by deω

i
dǫω

i
= (1 + γ) φω

i
Φω .

Its abatement costs decrease by the marginal abatement costs times the increase
in emissions.

2. +(1 + γ)βω
i ET ω: the increase in local damages. (1 + γ) more permits cause an

equivalent increase of global emissions.

12 For ease of presentation and comparison to the No-Treaty Outcome, we represent the marginal effects
by the issuance of one more permit. We are aware that this is not exactly a marginal change.

24



3. − (1+γ)
Φω (eω

i − ǫω
i ): the change in trade revenues. The permit price decreases by 1+γ

Φω .
The firm has to pay less for the permits it needs to cover its emissions, eω

i , but
also receives less for the permits it sells, ǫω

i . Depending on whether the firm is a
net seller (eω

i < ǫω
i ) or buyer (eω

i > ǫω
i ) of permits, the revenues will decrease or

increase, respectively.

4. −pω
(
1 − φω

i
Φω (1 + γ)

)
: the value of the remainder of the additional permit. From

the one additional permits it receives, the firm needs the fraction φω

Φω (1 + γ) to
cover its additional emissions, and it sells the remaining fraction (1 − φω

Φω (1 + γ))
at price pω (if γ is sufficiently high, it has to buy the remaining fraction).

5. −ρiγpω: the additional refund the country receives. The agency auctions γ addi-
tional permits at price pω.

6. +ρi
1+γ
Φω γEω

C : the value of the original refund decreases. As the price of the permits
drops, the agency makes less revenue by selling the original permits, γEC .

Again the first and fourth effect sum up to pω. Hence we rewrite the first-order conditions
(23) as

pω(1 + ρiγ) − 1 + γ

Φω
[ǫω

i + ρiγEω
C − eω

i ] = βω
i Eω

T (1 + γ). (24)

The marginal benefits of issuing a permit (LHS) equal the local marginal damages (RHS).

In the next lemma, we provide the necessary and sufficient conditions to ensure that for
a country i the cost function (22) is convex.

Lemma 3 (Convexity of Cost Function)
The local cost function (22) is strictly convex in ǫω

i in a state ω and for a country i if
and only if

2ρiγ ≥ φω
i

Φω
(1 + γ) − 2 − βω

i Φω(1 + γ). (25)

The proof of Lemma 3 is omitted as it is straightforward. Proposition 4 summarizes the
properties of the equilibrium in the ex-post stage.
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Proposition 4 (Rules Treaty)
Suppose we set up a Rules Treaty such that condition 25 holds in every state ω and for
all countries i. Then there exists a unique equilibrium under a Rules Treaty with the
vector of permit issuance, {ǫRT,ω

i }n
i=1, the corresponding total number of permits issued

from the countries and the agency, ERT,ω
T , the permit price, pRT,ω, the vector of country

specific emissions, {eRT,ω
i }n

i=1, and costs, {KRT,ω
i }n

i=1:

ERT,ω
T = Ē

1 + BωΦω

1+ n−1
1+γ

, (26a)

pRT,ω = BωĒ

1 + BωΦω + n−1
1+γ

, (26b)

eRT,ω
i = ēi − pRT,ωφω

i , i = 1, . . . , n, (26c)

ǫRT,ω
i = ēi

1 + γ
− γ

1 + γ

{
ρi(Ē − 2ΦωpRT,ω) − [ēi − ΦωpRT,ω( φω

i

Φω
+ βω

i

Bω
)]
}

(26d)

− 1
1 + γ

pRT,ωΦω( φω
i

Φω
+ βω

i − β̄ω

β̄ω
), i = 1, . . . , n, and

KRT,ω
i = φRT,ω

i

2 (pRT,ω)2 + βRT,ω
i

2 (ERT,ω
T )2 (26e)

+ pRT,ω(eRT,ω
i − ǫRT,ω

i ) − ρip
RT,ωγERT,ω

C , i = 1, . . . , n.

The proof of Proposition 4 is given in Appendix B. The next corollary highlights the
fact that the (expected) global costs will decrease in γ. Furthermore, it characterizes the
polar cases:

Corollary 1 (Properties of the Rules Treaty)
(i) In all states ω,

dKRT,ω(γ)
dγ

< 0 for γ ∈ [0, ∞).

(ii) If γ = 0, the outcome of the Rules Treaty is the same as in the No-Treaty Outcome.
Thus, ERT,ω

T (γ = 0) = ENT,ω and KRT,ω(γ = 0) = KNT,ω for all ω.

(iii) If γ → ∞, the outcome of the Rules Treaty approximates the Global Social Opti-
mum. Thus, limγ→∞ ERT,ω

T → ESO,ω and limγ→∞ KRT,ω → KSO,ω.
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The proof of point (i) of Corollary 1 is given in Appendix B . Points (ii) and (iii) follow
directly from Equations (26)a-(26)e by setting γ = 0 and by taking the limit γ → ∞. 13

The intuition of Corollary 1 is as follows: If a country issues an additional permit,
changes in costs — at a global level and for the issuing country — can be separated
into two parts. First, the benefits from using or selling the additional permit fully accrue
to the issuing country, and thus local costs decline. The additional costs, however, have
to be borne by all countries. Hence the issuing country has incentives to free-ride and
overissue.14 Second, γ additional permits are auctioned by the international agency,
thus affecting global costs. As refunding shares are fixed, each country’s costs move in
the same direction, albeit with different weights.15 As a consequence, local and global
interests are fully aligned. The higher γ is, the more important is the latter part. This
holds irrespective of how high the refunding share of the issuing country is.

To further fix ideas, suppose a Rules Treaty with a very high scaling factor is in place and
the aggregate number of permits is as in the Global Social Optimum. If a country i issues
an additional permit, its local costs will decrease as described above. However, there are
1 + γ additional permits in the market. Therefore, global costs, which, per definition,
have been minimal at the Global Social Optimum, will increase steeply. As each country
bears a fraction of the increase of total cost, the local costs of all countries including
country i will increase. As γ is very high, the latter change completely dominates the
former. If a country reduces permit issuance by one unit, local costs will increase both
because the country can use or sell one permit less and because global costs increase
steeply. Hence, neither increasing nor decreasing permit issuance is a profitable deviation
for country i.

13 A remark is in order here. limγ→∞ ERT,ω
C → 0 but the individual choices of ǫRT,ω

i will in general not
be zero. It is, however, possible to set the refunding shares {ρi}n

i=1 such that limγ→∞ ǫRT,ω
i → 0 for

all countries i in some state ω. Inspection of (26d) shows that we have to set ρi in such a way that
the second term vanishes in state ω:

ρ0,ω
i =

ēi − ΦωpSO,ω( φω
i

Φω + βω
i

Bω )
Ē − 2ΦωpSO,ω

. (27)

Note that it is not possible to set ρi such that (27) is satisfied in all states ω.
14 This is exactly what happens in the No-Treaty Outcome.
15 The Countries’ costs move in the same direction as long as the refunding share is positive.
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Figure 9: Equilibrium permit choices in the Rules Treaty as a function of γ for two
different refunding rules (upper and lower part). In the upper part, refunding
shares are given by Equation (27). The state of the world is ω = (hφ, hβ). Blue
solid lines: ǫRT,ω

i . Blue dashed lines: (1+γ)ǫRT,ω
i . Black dashed horizontal lines

are ǫi = 0 and ǫi = ēi

5.2.2 Example

In the following, we use the example introduced in subsection 3.4 to show ex-post out-
comes of the Rules Treaty. In accordance with Equation (26d), Figure 9 shows that every
country will decrease its equilibrium issuance of permits, ǫRT,ω

i , when γ is increased. In
the upper part, the refunding share for all i is ρi = ρ0,ω

i , therefore ǫRT,ω
i approaches zero

when the scaling factor becomes very large. For any other choice of the refunding rule,
ǫRT,ω
i remains bounded away from zero, as exemplified in the lower part of Figure 9.

Figure 10 depicts the difference of the equilibrium in a Rules Treaty with {γ = 1, {ρ0,ω
i }n

i=1}
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Figure 10: Upper part: No-Treaty Outcome. Lower part: Rules Treaty {γ =
1, {ρ0,ω

i }n
i=1}. State of the world ω = (hφ, hβ). The black curves show the

cost for a country i given that the other countries choose permits at equilib-
rium levels. The minima of the local cost curves represent the equilibrium.
Black vertical lines are equilibrium permit issuance, and red vertical lines are
equilibrium emissions. Dashed black vertical lines are (1 + γ)ǫRT,ω

i . Ends of
the abscissas correspond to business-as-usual emissions (except for country
1).

and the No-Treaty Outcome. It is apparent that in the Rules Treaty the emissions of
countries are smaller than in the No-Treaty Outcome. As γ = 1, the agency will issue
the same number of permits as the countries. But ERT,ω

T is still smaller than in the
No-Treaty Outcome. As with the No-Treaty Outcome, countries with damage parame-
ters lower than the average — here country 1 — will issue more permits (directly and
indirectly via the agency) than their firms emit GHGs (compare dashed line with red
line).
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5.3 Ex-ante

In the following, we consider the formation of the Rules Treaty and illustrate it with an
example.

5.3.1 Design of the Rules Treaty

Suppose that there is a designer aiming at minimizing the expected global cost, E[KRT ]
under the constraint that the Rules Treaty is implementable.16 Corollary 1 reduces the
designer’s problem to finding the largest γ ∈ [0, ∞) for which an implementable refunding
rule exists. For any γ, a refunding rule {ρi}n

i=1 is implementable if and only if

E[KRT
i (γ, ρi)] ≤ E[KNT

i ] ∀ i = 1, . . . , n,

where E[KRT
i (γ, ρi)] are the expected costs of country i in the Rules Treaty. We show in

Proposition 5 that an implementable refunding rule exists for all γ ∈ [0, ∞). As a prereq-
uisite, we calculate the minimal refunding share, ρmin

i (γ), that guarantees the participa-
tion of a country i in the Rules Treaty for a given γ. It is defined by E[KRT

i (ρmin
i (γ), γ)] =

E[KNT
i ]. This yields

E[φi

2 (pRT )2 + βi

2 (ERT
T )2 + pRT (eRT

i − ǫRT
i (ρmin

i )) − ρmin
i pRT γERT

C ] = E[KNT
i ].

We solve for ρmin
i (γ), using ǫRT

i (ρmin
i ) given by Equation (26d). The unique solution is:

ρmin
i (γ) =
E[ φi

2
[
(pRT )2 − (pNT )2]+ βi

2 [(ERT
T )2 − (ENT )2] − nβiΦ

B [(pNT )2 − γ+n
n(1+γ) (pRT )2] + (pNT )2Φ − 1

1+γ (pRT )2Φ]
E[(pRT )2 γ

1+γ Φ] .

(28)

Proposition 5 (Implementable Rules Treaty)
For any γ ∈ [0, ∞), suppose that Condition 25 holds for all ρi ≥ ρmin

i (γ) . Then there
exists at least one implementable refunding rule, {ρi}n

i=1. Hence the corresponding Rules
Treaty is implementable.

16 Apart from implementability, we do not need for the purposes of this paper to model the detailed
process of how permits are allocated across countries. However, for completeness, we show the Nash
Bargaining Solution in Section 7.
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The proof of Proposition 5 is given in Appendix B. Proposition 5 implies, notably, that
a very large value of γ is implementable. Hence an implementable Rules Treaty is able
to approximate the Global Social Optimum. We summarize this important result in the
following corollary.

Corollary 2 (Global Social Optimum Approximately Implementable)
For very large γ, suppose that condition 25 holds for all ρi ≥ ρmin

i (γ) . Then there
exists an implementable Rules Treaty that approximately establishes the Global Social
Optimum.

Again the intuition for Proposition 5 and Corollary 2 is straightforward. If the scaling
factor is greater than zero, global costs in the Rules Treaty will be smaller than in the
No-Treaty Outcome. As we have not put any constraints on the way the refunds can be
distributed, it is always possible to choose a set of refunding parameters ensuring that
all countries are better off. In particular, this is true if the scaling factor is very high.

5.3.2 Example

In this section we fine-tune the intuition of Proposition 5 with the example. The upper
part of Figure 11 shows the maximal γ for which the refunding rule {ρ1 = 0.2, ρ2 =
0.2, ρ3 = 0.6} is implementable in the three-country example. It demonstrates that
country 1 and 2 are only better off with the Rules Treaty if approximately γ < 2.
Therefore, γ > 2 cannot be implemented. However, we can increase the refund share of
countries 1 and 2 at the expense of country 3, e.g. by setting {ρ1 = 0.3, ρ2 = 0.3, ρ3 =
0.4}. This is shown in the lower part of Figure 11. In this case, every value γ ∈ [0, ∞) is
implementable. Figure 12 depicts ρmin

i (γ) as well as the Nash-bargaining (NB) solution
for equal bargaining power.17 Note that for the refunding rule {ρ1 = 0.3, ρ2 = 0.3, ρ3 =
0.4} used in the lower part of Figure 11, ρi > ρmin

i (γ) holds for all γ and i.

17 For each γ ∈ [0, ∞), the Nash-bargaining solution, {ρNB
1 , ρNB

2 , ρNB
3 } is obtained by

{ρNB
1 , ρNB

2 } ∈ argmax
ρ1,ρ2

{(
KNT

1 − KRT
1 (γ, ρ1)

) 1
3
(
KNT

2 − KRT
2 (γ, ρ2)

) 1
3
(
KNT

3 − KRT
3 (γ, 1 − ρ1 − ρ2)

) 1
3
}

and ρNB
3 = 1 − (ρNB

1 + ρNB
2 ).

The refunding rule in that case is such that

KNT
1 − KRT

1 (γ, ρNB
1 ) = KNT

2 − KRT
2 (γ, ρNB

2 ) = KNT
3 − KRT

3 (γ, ρNB
3 ).
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Figure 11: Illustration of the participation constraint in the Rules Treaty for two differ-
ent refunding rules (upper and lower part). The red lines are the constant
expected local costs in the No-Treaty Outcome. The black lines depict the
expected local costs in the Rules Treaty as a function of γ.

6 Rules Treaty vs. Target Treaty

In this section we compare the Rules Treaty with the Target Treaty. As we have shown
in Lemma 2 and Corollary 2, the Target Treaty is not ex-post optimal, whereas the
Rules Treaty is ex-post optimal when the scaling factor approaches infinity. However,
politicians might hesitate to agree to a very high scaling factor, one possible reason being
that is would deprive them of room to maneuver during a economic downturn. For such
cases, the comparison we state in Corollary 3 becomes relevant.
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Figure 12: ρmin
i (blue lines) and the Nash-bargaining solution (black lines) as a function

of γ

Corollary 3 (Comparison in the General Case)
(I) If the expected global costs of the Target Treaty are no higher than in the No-Treaty

Outcome, the Rules Treaty is ex-ante superior to the Target Treaty if and only if
γ > γcrit. γcrit ∈ (0, ∞) is the unique critical value where the expected global costs
of both treaties are the same.

(II) If the expected global costs of the Target Treaty are higher than in the No-Treaty
Outcome, the Rules Treaty is ex-ante superior to the Target Treaty for any γ ∈
(0, ∞).

The existence of γcrit in the first part of the corollary is a consequence of two results in
Corollary 2. First, for γ very high, the expected global costs are globally optimal, i.e.
minimal. Second, the global costs in the Rules Treaty increase when γ is decreased.

33



Next, we compare the treaties when countries are completely homogeneous.18 Con-
sider the following implementable and symmetric treaties: a Rules Treaty RT Symm ={{

1
n

}n

i=1
, γ very large

}
and a Target Treaty T T Symm =

{
ET T

n

}n

i=1
. We find the following

corollary:

Corollary 4 (Comparison in the Homogeneous Case )
If countries are completely homogeneous, RT Symm is ex-ante Pareto superior to T T Symm.

The reason is that in both treaties the global costs, which are lower for RT Symm than
for T T Symm, are shared equally among countries.

7 Treaty Formation

Up to this point, the only constraint we have imposed on the Rules Treaty during treaty
formation is that it has to be implementable, i.e. every country must be ex-ante better
off than in the No-Treaty Outcome. This leads to the condition that ρi ≥ ρmin

i must
hold for all i. In the proof of Proposition 5, we showed that ∑n

i=1 ρmin
i ≤ 1. So far we

have not modeled how the remaining refunding shares, 1−∑n
i=1 ρmin

i , are distributed. In
the following remedy this omission. We assume that a Nash-bargaining (NB) game takes
place and countries have bargaining power πi. For each γ ∈ [0, ∞), the Nash Bargaining
game solves

min
{ρi}n−1

i=1

{
n−1∏

i=1

(
E[KNT

i ] − E[KRT
i (γ, ρi)]

)πi

(
E[KNT

n ] − E[KRT
n (γ, 1 −

n−1∑

i=1
ρi)]

)πn}
.

The resulting refunding rule,
{

ρNB
i

}n

i=1
, is such that for all i and γ ∈ [0, ∞),

E[KNT
i ] − E[KRT

i (γ, ρNB
i )] = πi

(
E[KNT ] − E[KRT (γ)]

)
.

As a first example, consider the extreme case where a country j has all the bargaining
power, i.e. πj = 1. Country j’s refunding share is such that all the global cost saving
from the Rules Treaty, as compared to the No-Treaty Outcome, will accrue to it. All
other countries i 6= j receive the refunding share, ρmin

i , that merely guarantees their
participation. Next, consider the case where all countries are symmetric and have equal

18 That is, in all states ω they have the same business-as-usual emissions, damage parameters, and
abatement cost parameters.
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bargaining power. The resulting refunding shares after bargaining will be ρi = 1
n for all

countries i. This corresponds to RT Symm as discussed in Chapter 6, if the scaling factor
is very large.

8 Extreme Events

With the current state of our knowledge, the possibility of catastrophic damages from
climate change cannot be ruled out, although the probability is deemed to be small. If,
against all odds, damages turn out to be extreme, both the Target Treaty and the Rules
Treaty will allow countries to react to this information. However, information processing
is superior in the Rules Treaty.

In a Target Treaty, the optimal ex-ante number of permits will turn out much too high,
and countries may benefit from unilateral destroying permits.19 Two cases might occur.
First, all countries have more permits than they would choose in the No-Treaty Outcome.
In such a case, the outcome is the same as in the No-Treaty Outcome, as all countries
profit from destroying some of their permits up to the levels of the No-Treaty Outcome.
Second, some countries have more and others have fewer permits than in the No-Treaty
Outcome. Those who have more might choose to destroy some of their permits. At all
events if information arrives indicating that marginal damages will be very high, some
permits may not be used in equilibrium. In this sense, there is some reaction to new
information in the Target Treaty in the case of a extreme event. However, it tends only
to approximate the No-Treaty Outcome in this respect.

Countries participating in the Rules Treaty are fully able to react to information that
damages are very high and correspondingly choose low numbers of permits. Because the
Rules Treaty induces optimal adjustments to new information independently of its type,
this holds true no matter how high damages are and how unlikely they were ex-ante.

9 Discussion

Scope of Rules Treaties
We have addressed two deficiencies in the current attempts to set up international climate

19 In the formal model Assumption 2 excludes such cases.
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treaties on the basis of reduction targets: the underprovision of climate protection and
difficulties in reacting to new information. In a simple model we have shown that the
Rules Treaty has the potential to overcome both problems. First, it can be designed
in such a way that countries have incentives to abate emissions up to a level that is
optimal from a global perspective. Second, by construction, it induces countries to react
optimally to new information.

Our simple model is sufficient to show these advantages. There are several useful exten-
sions to it, which could provide further insights. We will discuss some of them here.

More General Functional Forms
The shapes of the damage and abatement cost functions are important as marginal
costs and benefits are largely determined by this choice. Our assumption that both
functions are quadratic is largely for technical convenience. The exact choice of the
shape does not influence our qualitative results as long as the functional form is similar
with respect to smoothness20 and marginal abatement and damage costs are increasing.
However, completely different functional forms, such as a damage function that includes
a singularity – a GHG stock above which damages become extremely high –, might
radically change the result of the Target Treaty. Higher abatement in the Target Treaty
could be justified as an insurance against such catastrophic climate change. In our one-
period model the Rules Treaty remains unaffected by these problems. However, this may
no longer be true in a multi-period model.

Multi Period Framework
A sensible extension would be a multi-period framework, which would enable us to ad-
dress several further points. First, we could model gradual learning about the state of
the world. The main reason why this is more realistic is that due to the inertia of the
climate system, true damages are slow to reveal themselves. Second, we could modify the
damage function to incorporate the inertia of the climate system. Instantaneous dam-
ages might not only depend to the current level of GHG but also on the rate of change
in previous periods. Third, a multi-period model enables us to consider technological
constraints on abatement levels due to lock-in effects. Lock-in effects are relevant, say,
in the energy system, as power plants typically have long economic lifetimes. Such con-
straints might imply that emission levels cannot decrease below a certain fraction of the

20 Smoothness means continuously differentiable abatement and damage costs.
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previous period(s). Fourth, high abatement effort in a country may shift production to
other countries not participating in the scheme.

Sequential Negotiation Process
Another extension is a more detailed modeling of the negotiation process. The outside
option could be more realistic. Furthermore, it could include coalition formation and
sequential bargaining processes with respect to the allocation of refund shares in the
Rules Treaty and with respect to the permit allocation in the Target Treaty.

Geographical Scope
If countries are homogeneous, Rules Treaties are easiest to implement, so first applica-
tions of the Rules Treaties are likely to be considered for the EU. Globally, however,
Rules Treaties are much harder to introduce. On average developing countries are more
vulnerable to climate change because their economies rely more heavily on climate-
sensitive activities than industrial countries. While Rules Treaties can be designed so
that developing countries receive high compensation through high refunding shares, di-
rect application becomes much more delicate. A small country has a negligible impact on
the permit price and may overissue. To solve the problem, it might be useful to establish
a hierarchical scheme: first, clusters each representing a group of countries; second, the
number of permits in a cluster is allocated to individual countries.

Conclusion
Rules Treaties offer an alternative to Target Treaties. While no blueprint for a treaty
is a panacea, the general idea is that focusing on rules rather than targets could be a
useful principle in further attempts to solve a global public-good problem like mitigating
climate change.
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A Table of variables

Symbol Meaning
i country
n number of countries

SO Global Social Optimum
NT No-Treaty Outcome
T T Target Treaty
RT Rules Treaty
ēi business-as-usual emissions of country i

Ē global business-as-usual emissions
ei GHG emissions of country i
ǫi emission permits of country i
E global emission permits,

∑n
i=1 ǫi

ET In RT: total amount of emission permits, ∑n
i=1 ǫi(1 + γ)

EC In RT: emission permits issued by countries , ∑n
i=1 ǫi

Ci abatement costs of country i
φi abatement cost parameter of country i
Φ ∑n

i=1 φi

p price of emission permit
E global emission of GHG
βi damage parameter of country i
B ∑n

i=1 βi

β̄ average damage parameter
Di (environmental) damage of country i
Ki local costs of country i
K global costs, i.e.

∑n
i=1 Ki

E[Ki] expected local costs
E[K] expected global costs

ρi refund share of country i
γ scaling factor
ri refund for country i
ωφ aggregate event (abatement costs); ωφ ∈ {hφ, lφ}
ωβ aggregate event (environmental damages); ωβ ∈ {hβ , lβ}
ω state of the world ω = ωφ x ωβ

Ω set of states of the world: ω ∈ Ω
π probability of hφ

σ probability of hβi

D πhBh + πlBl

A ( σh

Φh + σl

Φl )
ρmin

i (γ) given γ, refunding share where E[KRT
i ] = E[KNT

i ]
γcrit scaling factor where E[KRT ] = E[KT T ]
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B Proofs

Proof of Proposition 1
Summing up the first-order conditions (10) yields

Ē − Eω = BωEωΦω. (29)

This can be rearranged to yield (11a).

Next, we solve Equation (10) for ei:

eω
i = ēi − BωEωφω. (30)

Plugging in Equation (11a) yields Equation (11b) �

As Equation (9) is strictly convex, the solution is unique. Hence the necessary conditions
are also sufficient.

Proof of Proposition 2
Summing up the necessary first-order conditions (14) across countries, one obtains

pωn = BωEω. (31)

From Equation (5) we conclude

Ē − Eω

Φω
n = BωEω. (32)

Equation (32) can be rewritten to yield Equation (15a). Plugging Equation (15a) into
Equation (31) gives Equation (15b). To derive Equation (15d), we rewrite Equation (14)
as

ǫω
i = Φω [pω − βω

i Eω] + eω
i ,

and plug in Eω = pω

B n and Equation (3). Thus we obtain

ǫω
i = Φω

[
pω − βω

i

pω

B n

]
+ ēi − pωφω

i

⇔ ǫω
i = ēi − pωΦω( φω

i

Φω
+ βω

i − β̄ω

β̄ω
).
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As the cost function (12) is strictly convex, the solution is unique. Hence the necessary
conditions are also sufficient. �

Proof of Lemma 1
Suppose all countries j 6= i obtain permits ǫT T

j such that E[KT T
j ] = E[KNT

j ].

If E[KT T ] > E[KNT ], it must be the case that E[KT T
i ] > E[KNT

i ] for the remaining
country i. Hence there cannot exist an implementable Target Treaty.

If E[KT T ] ≤ E[KNT ], it must be the case that E[KT T
i ] ≤ E[KNT

i ] for the remaining
country i. Hence the Target Treaty is implementable. �

Proof of Lemma 2
In order to be socially optimal for all realizations ω, ET T = ESO,ω must hold for all ω.
According to (11a) and (18), this is true if A

D+A = 1
1+BωΦω for all ω. This is not possible,

since 1
1+BωΦω differs in at least two states of the world. �

Proof of Proposition 4
Summing up the necessary first-order conditions (24) across countries, one obtains

pω(n + γ) − 1 + γ

Φω
[EC + γEC − ET ] = BωEω

T (1 + γ).

As Eω
T = Eω

C(1 + γ), this is

pω(n + γ) = BωEω
T (1 + γ). (33)

From Equation (5) we conclude

Ē − Eω
T

Φω
(n + γ) = BωEω

T (1 + γ). (34)

Equation (34) can be rewritten to yield Equation (26a). Plugging Equation (26a) into
Equation (33) gives Equation (26b). To derive Equation (26d), we rewrite Equation (24)

ǫω
i = Φω

1 + γ
[pω(1 + ρiγ) − βω

i Eω
T (1 + γ)] − ρiγEω

C + eω
i ,

and plug in Eω
T = pω

B
ω n+γ

1+γ , and Equations (3) and (5). Thus we obtain

ǫω
i = Φω

1 + γ

[
pω(1 + ρiγ) − pω

Bω

n + γ

1 + γ
(1 + γ)βω

i

]
− ρi

γ

1 + γ
(Ē − pωΦω) + ēi − pωφω

i
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⇔ ǫω
i = Φω

1 + γ
pω[1 + ρiγ] − pω

Bω

n + γ

1 + γ
Φωβω

i − γ

1 + γ
ρi(Ē − pωΦω) + ēi − pωφω

i

⇔ ǫω
i = 1

1 + γ
pωΦω + ρi

γ

1 + γ
pωΦω − γ

1 + γ

βω
i

Bω
pωΦω − n

1 + γ

βω
i

Bω
pωΦω

− γ

1 + γ
ρi(Ē − pωΦω) + ēi(

1
1 + γ

+ γ

1 + γ
) − pωφω

i ( 1
1 + γ

+ γ

1 + γ
)

⇔ ǫω
i = ēi

1 + γ
+ γ

1 + γ
(ρip

ωΦω + ēi − pωφω
i − ρiĒ + ρω

i pωΦω − βω
i

Bω
pωΦω)

+ 1
1 + γ

(pωΦω − pωφω
i − n

βω
i

Bω
pωΦω)

⇔ ǫω
i = ēi

1 + γ
+ γ

1 + γ

{
−ρi(Ē − 2pωΦω) + ēi − pωΦω( φω

i

Φω
− βω

i

Bω
)
}

+ 1
1 + γ

pωΦω(− φω
i

Φω
+ β̄ω

i − βω
i

β̄ω
i

)

⇔ ǫω
i = ēi

1 + γ
− γ

1 + γ

{
ρi(Ē − 2pωΦω) − [ēi − pωΦω( φω

i

Φω
− βω

i

Bω
)]
}

− 1
1 + γ

pωΦω( φω
i

Φω
+ βω

i − β̄ω
i

β̄ω
i

).

�

Proof of Corollary 1(i)
We use Equations (4) and (5) and rewrite Equation (7b) as

KRT,ω(ERT,ω(γ)) = [Φ
ω

2 (Ē − ERT,ω(γ)
Φω

)2 + Bω

2 (ERT,ω(γ))2].

Hence,
d KRT,ω

d γ
= ∂ KRT,ω

∂ ERT,ω

d ERT,ω

d γ
.

For γ ∈ [0, ∞), ERT,ω ∈ (ESO,ω, ENT,ω]. KRT,ω(ERT,ω) is by construction at its mini-
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mum for ERT,ω = ESO,ω and convex in ERT,ω. Hence, ∂ KRT

∂ ERT,ω > 0. Furthermore, from
(26a) we obtain d ERT,ω

d γ < 0. �

Proof of Proposition 5
Summing up ρmin

i (γ) as given by Equation (28) leads to
n∑

i=1
ρmin

i (γ) = E[KRT (γ)] − E[KNT ]
E[(pRT )2 γ

1+γ Φ] + 1. (35)

This sum is no bigger than 1 for any γ ∈ [0, ∞), as the expected global costs under
the Rules Treaty are no higher than in the No-Treaty Outcome and the denominator is
positive.

Hence, for any γ ∈ [0, ∞), as ∑n
i=1 ρmin

i (γ) ≤ 1, there exists a Rules Treaty {{ρi}n
i=1 , γ}

with ρi ≥ ρmin
i (γ) ∀ i which, by definition of ρmin

i (γ), is implementable. �

Proof of Lemma 4
RT Symm approximately implements the Global Social Optimum in all states ω, and in
equilibrium each country i issues the same number of permits ǫRT,ω

i ≈ ESO,ω

n . Hence,
country-specific costs are distributed symmetrically in both treaties.21 Furthermore,
E[KRT Symm] < E[KT T Symm]. �

21 If emission permits and the refunding shares are not symmetrical but chosen arbitrarily, one might
imagine a case where the Rules Treaty is not a Pareto Improvement compared to the Target Treaty
even though countries are symmetrical. Suppose, e.g., that E[KT T ] − n−1

n
E[KNT ] ≤ E[KSO ]

n
and

E[KT T ] ≤ E[KNT ]. Then there exists an implementable Target Treaty T T Asymm where n−1 countries
j 6= i obtain permits such that E[KT T

j ] = E[KNT
j ], and country i receives the remaining permits. As a

consequence, country i is ex-ante better off in this Target Treaty than in the Rules Treaty RT Symm.
Hence, RT Symm is not Pareto superior to T T Asymm.
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