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Abstract

The paper proves the existence of equilibrium in nonrenewable resource

markets when extraction costs are non-convex and resource storage is possi-

ble. Inventories flatten the consumption path and eliminate price jumps at

the end of the extraction period. Market equilibrium becomes then possible,

contradicting previous claims from Eswaran, Lewis and Heaps (1983). We

distinguish between two types of solutions, one with immediate and one with

delayed build-up of inventories. For both cases we do not only characterize po-

tential optimal paths but also show that equilibria actually exist under fairly

general conditions. It is found that optimum resource extraction involves in-

creasing quantities over a period of time. What is generally interpreted as an

indicator of increasing resource abundance is thus perfectly compatible with

constant resource stocks.
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1 Introduction

1.1 Non-existence results

In their seminal contribution, Eswaran, Lewis, and Heaps (1983, henceforth labelled

“ELH”) show that competitive equilibria generally do not exist in exhaustible re-

source markets, provided there are initial economies of scale in either the extraction

or the utilization of the resource as an input in production. Because markets for re-

sources like oil, coal, and gas are very important in contemporary economies and scale

effects often observed on resource markets the paper received broad attention. ELH

extend their result to the case where firms are realistically allowed to store extracted

resources above the ground, stating that “as in the no-storage case, price must jump

discontinuously at the terminal time, so that an intertemporal equilibrium does not

exist” (ELH p. 162).

The present paper confirms in a very general setup that the result of ELH without

storage is correct but derives in detail why the result with storage does not hold. In

fact, ELH admit that costless inventories may flatten the consumption path and

eliminate price jumps at the end of optimization. But, using an erroneous argument

where the non convexity of the cost function is ignored, they conclude that this may

not restore equilibrium existence. It is however shown in the current paper that

the combination of non convex extraction costs with costless inventories makes it

optimum to extract at high rates and to build up inventories in a specific extraction

phase and to exclusively sell from inventories in a last phase. Prices and sales follow

a smooth profile and equilibrium exists.

We derive the characteristics of extraction, sales, and price profiles of nonrenew-

able resources using a general framework. As a novelty we obtain that optimum

resource extraction with given resource stocks involves increasing extraction quanti-

ties over some period of time. While in the standard resource economics literature

this is generally seen as an indicator of increasing resource abundance, we show that

increasing extraction can be perfectly compatible with constant resource stocks. The

reason is that resource extractors need to increasingly exploit economies of scale to

obtain constant discounted resource rents. Proofs of existence and nonexistence are

fully derived which makes the point of the original contribution of ELH more rigorous.

Like ELH we assume non-convex extraction costs, price-taking firms, and the use of

costless resource inventories. The maximization problem of the resource-owning firm

includes two stock variables, the resource stock below the ground and the inventory

stock above the ground, and two control variables, the resource extraction quantity

and the sell quantity. For an equilibrium solution to exist, we require the price path

not to exhibit (positive) jumps but rather to be continuous in time, in order to avoid

the problem that firms wish to postpone production to the time period after the
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jump.

1.2 Our main findings

In this subsection, we provide an overview of our results as well as the intuition be-

hind them. Formal statements and proofs, which involve solving complex dynamic

optimization problems, are given in later sections. In all the sections we will succes-

sively consider the no-storage and the storage case. Our results for the no-storage

case, formally stated in Proposition 1, confirm those of ELH: if storage is excluded,

no market equilibrium (in the usual sense provided in Definition 1) exists on resource

markets with non-convex extraction costs. The intuition is that, for an equilibrium

to exist, prices must increase over time, the usual finding for nonrenewable resource

extraction. In the absence of storage, increasing prices are only compatible with

decreasing extraction. However, rather than pursuing extraction at quantities lower

than those with minimum average cost, it is preferable for the firm to shut down,

which generates a discontinuity in supply and an upward jump of the market price.

But, such a discontinuous price path would provide incentives for the firm to postpone

and stop extraction later, contradicting the existence of a market equilibrium.

When storage becomes possible, however, the previous intuition no longer applies.

In fact, even if the extraction path is discontinuous, inventories can be used to gen-

erate a continuous sale path, giving rise to a continuous price path. We can show

that an equilibrium exists under very general conditions. Moreover, if an equilibrium

exists, it has to be of one of the two types depicted in Figure 1 (left and right). To

distinguish the two types, we define a threshold resource stock, R∗1, that depends

on cost and demand functions; the formal definition will be given in Equation (37).

In the first type of equilibrium, where the initial given resource stock R0 is below

the threshold (R0 ≤ R∗1), firms start building inventories from period zero on. In a

first period, extraction path is increasing over time. Then, at some time t∗2, the firm

stops the extraction and starts to sell out of inventories. Sales are continuous and

decreasing over time, consistent with a continuously increasing price path in a general

equilibrium, depicted in the upper left of the Figure. Resource stock decreases up

to time t∗2 while inventories gradually build up and continuously decrease after t∗2,

which can be seen from the lower left in Figure 1. The second type of equilibrium is

obtained when R0 > R∗1; then, the previous pattern is preceded by a period in which

extraction is positive but storage is not yet used. In that period, the extraction and

sale flows are equal and decreasing over time. Once the amount of resources reaches

the threshold R∗1, firms start building inventories, just like in the type 1 equilibrium.

Sales continue to decrease while extraction increases with time. At some point in

time, extraction stops and sales are pursued until stocks are completely sold.

It is worth emphasizing that, in both cases, the extraction path is non mono-
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tonic. In particular, the shutdown of the firm is always preceded by a period where

extraction is rising over time. The intuition is that, instead of using low extraction

levels that would generate a too large average extraction cost (because of the fixed

maintenance cost), the firm prefers to maintain a relatively high flow of extraction

and build inventories - before closing. During the period in which the firm is build-

ing inventories the firm’s optimal strategy results from a trade off between opposing

incentives. On the one hand, the firm aims at extracting resources at a level close

to q which is the one that minimizes average extraction costs. On the other hand,

because of the discount factor, the firm has incentives to postpone extraction as much

as possible, and thus to build the inventories later in time. The simultaneous impact

of both incentives leads the firm to chose an increasing extraction path ending in q.

The second type equilibrium includes a period where extraction decreases with

time and another where it increases. Interestingly, the period with decreasing extrac-

tion comes first. The switch to the increasing extraction period occurs only when

resource stocks fall below a given threshold. This means that, here, observing an

increasing extraction path is actually an indication of resource scarcity (formally an

indication that the amount of resource left is below R∗1), while a decreasing extraction

path indicates that resource are still abundant, i.e. lie above R∗1.

While it can be shown in great generality that equilibria have necessarily to look

like the ones shown in Figure 1, proving that such equilibria always exist requires

some additional technical assumptions. These are either related to the initial amount

of resources or to the properties of the production function. More precisely, we will

show that there exists another resource threshold, labeled R and greater than R∗1,

which depends on the properties of cost and demand functions as well as the discount

factor, such that:

if R0 < R there exists a unique equilibrium,

while we still have:

if

{
R0 ≤ R∗1 the equilibrium is of type 1

R0 > R∗1 the equilibrium is of type 2
.

We will also show that, with additional conditions, one gets R = +∞. Then, there

always exists one and only one equilibrium.

1.3 Contribution to literature

In the aftermath of the important ELH contribution, the general aim of literature was

to find ways paving the path to restore equilibrium. This seems to be imperative be-

cause in reality we find many well-functioning resource markets, despite non-convex
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cost structures. Since the publication of the ELH paper, research addressed many

of the ELH model assumptions, but never resource storage. Prominently, Cairns

(1991) and Asheim (1992) use alternative assumptions on market behavior introduc-

ing full contestability of markets to get an equilibrium; Cairns (2008) uses an indirect

approach basing competitive markets on a limit of oligopolistic equilibria. These au-

thors show that, if there are no fixed extraction costs, the assumption of some firms

entering and exiting the market with unbounded frequency is sufficient to restore

equilibrium. We will motivate below why and how we think it is appropriate to ex-

clude these “chattering controls” at the firm level for resource extraction. Fisher and

Karp (1993) show that the introduction of a backstop technology restores both exis-

tence and efficiency, provided that the backstop price is sufficiently low. The realism

of assuming a new technology being able to fully replace natural resources is limited;

backstops will thus be disregarded in our paper. An equilibrium is also shown to exist

when extraction capacity is limited, see Holland (2003); we will not use such a restric-

tion in our analysis. Lozada (1996) compares resource depletion of the production of

“normal” commodities and solves the model also in discrete time. He derives that, for

U-shaped average cost curves, equilibria sometimes exist when using discrete time.

We explain below why we think it is more appropriate to assume a continuous-time

framework. Mason (2012) studies the smoothing effect of resource inventories in the

presence of stochastic demand, which is a general feature of storage. Furthermore,

several papers looking at cost and technologies of nonrenewable resource extraction

are equally relevant for the present contribution. Le Van, Schubert, and Nguyen

(2010) deal with a non-renewable natural resource producer using a convex–concave

technology and derive the emergence of poverty traps in less developed economies.

Gaudet, Moreaux, and Salant (2001) look at resource extraction when resource sites

and their users are spatially distributed, which entails additional cost of resource pro-

duction. Finally, Chakravorty, Moreaux, and Tidball (2008) analyze the ordering of

resource extraction from different stocks depending on extraction costs. This relates

to our case because sales out of (underground) stock involve different cost than those

of (above-ground) inventories.

Remarkably, the most general problem of resource extraction with non-convex

costs and the realistic assumption of inventories has never been addressed in literature

since ELH. The present contribution fills this gap, rectifying one of the central results

in resource economics. As resource markets are crucial for the broadly discussed

energy and climate issues, our study on resource market equilibria also contributes

to formulating adequate energy and climate policies, see e.g. Harstadt (2012). The

model assumption of non-convex extraction costs has been confirmed throughout,

because set-up activities like drilling wells, building pipelines, searching for deposits,

etc. are still highly relevant and will even be more important in the future, when

more remote deposits will be explored. At the same time, resource inventories have

6



played an increasingly important role in recent years, see e.g. Mason (2012); their

inclusion in an extraction framework is therefore warranted.

The remainder of the paper is organized as follows. Section 2 introduces the

model framework. Formal statements and derivations of the findings described in

this introduction are provided in Section 3. Section 4 concludes.

2 The setting

Time is assumed to be continuous. We analyze a representative resource firm which is

endowed with an initial stock of non renewable resources R0 and aims at maximizing

discounted profits. The firm can choose the flow of resource extraction q and the flow

of sales s, which may differ when storage is possible. The levels of resource extraction

and sales at time t are denoted qt and st, respectively. The firm is price taker - like

in the original contribution of ELH1 - and the instantaneous resource price at time t

is denoted by Pt. Discounted profits are computed using an exogenous discount rate

δ.

Central to the analysis is the assumption that extraction costs are not convex.

Moreover, we exclude infinitely rapid variations in the extraction flows (“chattering

controls”) that could be used by the firm to overcome the problems associated with

the non-convexity of cost functions.2 In previous literature, the statements that in-

finitely rapid variations should be ruled were not precisely formalized in mathematical

terms.3 Rather it was implicitly assumed that standard dynamic optimization meth-

ods can be used, which would require preventing very rapid variations in order to

be to be correct. Formally speaking, however, with non convex cost and no explicit

constraints preventing chattering controls, all so-called “optimal paths” derived us-

ing “first-order condition methods” are dominated by (possibly smooth) paths which

would use sufficiently rapid variations. Thus, for the analysis to be rigorous, the

constraints that prevent chattering controls have to be made explicit. We know that

some of these constraints will necessarily be binding. One possibility could be to move

to discrete time, that is to impose that the extraction function is step-wise constant.

But the solution would then depend on the length of the time period, about which it

would be difficult to make convincing arguments. Other possibilities would involve

putting bounds on the derivatives of extraction path, but again the solution would

depend on the values given to such bounds.

1ELH explain in detail: “Assume that the industry consists of a sufficiently large number of
identical firms so as to warrant price-taking behavior. For simplicity, we presume that all firms have
the same initial reserves [. . .] and face the same costs of extraction [. . .]”, see ELH p. 156/7.

2By varying infinitely rapidly the extraction quantities, the firm could get infinitely close to
the case where it would face a convex cost function, equal to the convex envelope of the true cost
function.

3See e.g. ELH p. 157 or Lozada (1996, p. 436)
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In order to avoid making a difficult and arbitrary choice about the length of the

time period or the bounds of the derivatives of the extraction path, we focus on a

simple framework with non-convex costs where chattering controls can be ruled out

in a straightforward manner. It is assumed in our model that there is a maintenance

cost to be paid in order to keep the firm active independent of the level of extraction,

which reflects costs for keeping a minimum level of security, replacing aging material,

or non-compressible labor cost. In addition, we posit that, once the firm is closed,

it is not feasible to reopen it. The rationale is that the maintenance of a resource

extraction site cannot be disabled temporarily, while dismantling and cleaning-up

are costly and hence only done once. These assumptions indeed appear to be more

realistic than allowing for infinitely rapid fluctuations of extraction.4

Specifically, we posit that the extraction of resource quantity qt > 0 at any date t

implies a cost f(qt) + c0, where c0 > 0 is the maintenance cost and f is continuously

differentiable and (strictly) convex, with f(0) = 0. The maintenance cost is only

supported when the firm is active (qt > 0), but disappear when the firm is closed

(qt = 0).5 The maintenance cost is not a fixed cost that has to be paid whatever

happens; it can be avoided by closing the firm. However, its level is independent

from the extraction level (when positive) and will be referred as a “fixed maintenance

cost” to emphasize that property. Lewis, Matthews and Burnes stress that such costs

“often constitute a substantial operation of operating resources” (Lewis, Matthews

and Burnes, 1979, p. 227). The assumption that prevents chattering is as follows:

Assumption 1 Reopening of the resource firm is not possible after a shutdown; for-

mally

qt = 0⇒ qτ = 0 for all τ ≥ t

The assumed cost function is represented in Figure 2. The non convexity exclu-

sively comes from the fixed maintenance cost c0 > 0, with Assumption 1 making it

impossible to “bypass” it with chattering controls. To be more precise, Assumption

1 is needed to rule out the possibility of having an extraction that would infinitely

rapidly alternate between points O and A. Such rapid variations would indeed make

it possible to mimic the convex-envelope of the cost function, represented by the dot-

ted line in Figure 2. We would be back to the convex extraction cost problem about

which everything is well-known.

Our setting, with a fixed maintenance cost, is described as a “type 1 noncon-

vexity” in ELH. Their contribution extends to more general nonconvexities, but do

not formalize the constraints that would rule out chattering controls. Rather than

4Literature admitting chattering control uses models with economies of scale but without fixed
costs like we assume here, see Cairns (1991) and Asheim (1992).

5To lighten notation, the dependency in time is denoted by a subscript, i.e. we denote ft for
f(t).
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following this hazardous path which consists in discussing an optimization problem

without making all binding constraints explicit, we prefer to restrict the analysis to

this so-called type 1 nonconvexity. Moreover, since our objective is to demonstrate

the possibility of equilibrium existence, there is not much loss to focus on this set-

ting which ELH view as the one where equilibrium non-existence (ELH, p. 155) is

the most obvious. In fact, as will become clear below, existence and non existence

of market equilibrium with that kind of nonconvexity is related to the choice of the

closing time, just as in ELH.

We denote by q the extraction level that minimizes the average extraction cost.

That is:

q = arg min
q

c0 + f(q)

q
(1)

Looking at the derivative of c0+f(q)
q

, we see that q could also be defined as the solution

to the equation:

f ′(q) =
c0 + f(q)

q
, (2)

which means that q is at the same time the level of extraction where average cost

equals marginal cost.

Resource stock (below the ground) at time t is denoted by Rt, while the level of

resources stored above the ground at time t is It. By observing matter conservation
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we have

∂Rt

∂t
= −qt,

∂It
∂t

= qt − st.

It will be assumed in all cases that for inventories we have It=0 = 0 and It ≥ 0 for

all t. When storage is allowed it is assumed to be costless, like in the contribution of

ELH.

For a given price path Pt, the problem of the firms involves finding a flow of

extraction and sale that solves

max
q,s

{
J [q] =

ˆ +∞

0

e−δt (Ptst − f(qt)− c01qt>0) dt

}
(3)

s.t.
∂Rt

∂t
= −qt,

∂It
∂t

= qt − st,

Rt=0 = R0,

Rt ≥ 0, It ≥ 0, qt ≥ 0 and st ≥ 0 for all t,

where 1qt>0 denotes a dummy variable equal to 1 if qt > 0 and to zero if qt = 0.

The no-storage and storage cases will only differ by the assumption on whether It
is constrained or not to be equal to zero; in the no-storage case, the additional

assumption It = 0 for all t is introduced. The demand side of the economy does

not need to be modeled explicitly. We will simply assume that a demand for st will

only be met for a price g(st). The inverse demand function g(.) is assumed to be

decreasing; g(0) is finite.

The paper is about the existence of market equilibria. Formally:

Definition 1 (Market equilibrium) A market equilibrium is a price trajectory P ∗t
and flows of extractions (q∗t ) and sales (s∗t ) such that:

• (Rationality) Extraction flows and sales (q∗t and s∗t ) are those that maximize

firm profit when the price path is P ∗t ,

• (Market clearing) For all t we have P ∗t = g(s∗t ).

We investigate whether such equilibria may exist, considering in turn the cases

where storage is ruled out or allowed. In both settings an obvious answer can be

provided when
c0+f(q)

q
≥ g(0). In this case, there are no potential gains from trade,

and there always exists a unique equilibrium. It corresponds to the case where the

firm never starts operations and nothing is extracted. To exclude this degenerate

case, we introduce the following assumption.
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Assumption 2 There are potential gains from trade; i.e. formally we have

g(0) > f ′(q).

This assumption is a minimal requirement for the question we address to be of

interest. The next sections provides formal statements and proofs for the results

discussed above. We look in turn at the no-storage and the storage case.

3 Extraction without storage

3.1 The setup

Ruling out storage means that It has to equal zero at all periods of time, and thus

st = qt. The firm’s problem involves finding a flow of extraction (or sale) that solves:

max
q

{
J [q] =

ˆ ∞
0

e−δt (Ptqt − f(qt)− c01qt>0) dt

}
(4)

s.t.
∂Rt

∂t
= −qt,

Rt=0 = R0,

Rt ≥ 0, qt ≥ 0 for all t.

It is possible to show that there cannot be a price path P ∗t and a solution q∗t of the

the problem (4) such that P ∗t = g(q∗t ) for all t. That leads to following statement:

Proposition 1 (ELH, no existence without storage) In the absence of storage

a market equilibrium does not exist.

Proof. The proof is split into two parts. In the first, given in Section 3.2, we use

necessary conditions to restrict the set of potential equilibrium paths. In the second,

provided in Section 3.3, we show that none of these potential equilibrium paths can

be an equilibrium.

3.2 Potential equilibrium paths

Formally, we call a “potential equilibrium path” a path that fulfills the market clear-

ing conditions and the first order conditions associated to the firm’s optimization

problem. If an equilibrium were to exist it would necessarily be one of these potential

equilibrium paths. However, due to the non-convexity of the cost function, fulfilling

the first order conditions is not sufficient to insure the optimality of the firms strategy.

The question about whether these potential equilibrium paths are indeed equilibrium

paths will be explored in Section 3.3.
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We provide a detailed analysis of the case without storage in order to show our

procedure as clear as possible and to motivate the later case with inventories. The first

order conditions associated with the firm’s problem are straightforward to establish.

In the system (4), there is one (real) state variable, R, and one (real) control variable,

q. Denoting by p the (unique) real co-state variable, the Hamiltonian of the system

(4) reads as follows:

H(R, p, q, t) = −qp+ e−δt (Ptq − f(q)− c01q>0) .

The maximum principle yields that the three following equations hold:

·
p = −∂H

∂R
(R∗, p, q∗, t) = 0, (5)

·
R∗ =

∂H

∂p
(R∗, p, q∗, t) = −q∗, (6)

H(R∗t , pt, q
∗
t , t) = max

a

(
−apt + e−δt (Pta− f(a)− c01a>0)

)
, (7)

where the ∗ superscript is used to denote the solution of the optimization problem.

Equation (5) implies that pt = p0 for all t. Equation (7) is strictly concave for

a > 0, which implies that q∗ solves:

e−δt (Pt − f ′(q∗t )) = p0, (8)

or: q∗t = 0.

We check that the Hamiltonian is zero whenever q∗t = 0. For any other date we

obtain:

H(R, p, q∗, t) = e−δt(q∗t f
′(q∗t )− f(q∗t )− c01q∗t>0).

The case that extraction lasts forever can be ruled out as it would imply that there

exist long periods with very low extraction levels, for which the average extraction

cost would be very high. But this cannot be optimal for the firm, since the price is

known to remain below or equal g(0), which is finite. We thus denote by tf the final

extraction date. When q∗t = 0 (that is for t > tf ) we have H(R, p, q∗, t) = 0. Also

at the terminal date the Hamiltonian has to be equal to zero, H(R, p, q∗, tf ) = 0.

Moreover, the map q 7→ qf ′(q)− f(q)− c0 is strictly increasing over R+ and equal to

zero when q = q. Therefore q > 0 is the only solution to H(R, p, q, t) = 0, implying

q∗tf = q. At all other dates, the Hamiltonian has to be positive (otherwise the resource

firm prefers q∗ = 0, which is an absorbing state), meaning that q∗t ≥ q as long as the

extraction period is not over.

From (8) we can deduce that, for any t between 0 and tf , we have for prices and

12



marginal extraction costs:

Pt − f ′(q∗t ) = (Ptf − f ′(q))e−δ(tf−t). (9)

In equilibrium, the price of the resource must verify Pt = g(q∗t ). We define the function

for marginal extraction rent π : R+ → R as follows:

π(q) = g(q)− f ′(q). (10)

The function π is strictly decreasing in q. In equilibrium, equation (9) implies that:

π(q∗t ) = π(q)e−δ(tf−t),

q∗t = π−1
(
π(q)e−δ(tf−t)

)
.

In an equilibrium resource stocks have to be fully exhausted. Otherwise the firm

would have interest in postponing its shutdown. The resource constraint imposes

that tf is thus defined as the unique date such that the following equality holds:

R0 =

ˆ tf

0

q∗t dt =

ˆ tf

0

π−1
(
π(q)e−δ(tf−t)

)
dt. (11)

Finally, the optimal price path P ∗ is defined by:

∀t ∈ [0, tf ], P
∗
t = g(π−1(π(q)e−δ(tf−t))).

3.3 Profitable deviation from equilibrium

In order to show that an equilibrium does not exist, we will derive that, when the

price path is P ∗(t) = g(π−1(π(q)e−δ(tf−t))) for 0 ≤ t ≤ tf and g(0) afterwards, it is

indeed in the interest of the firm to deviate from the strategy depicted above. The

deviation is simple and involves lowering extraction by dq during dt period of time

before tf , and extracting the dt.dq amount of resources left at rate q during dt.dq
q

periods of time after tf .

The loss of income due to the sales that no longer occur before tf is given

by e−δtfg(q)dt.dq while the gain in income for sales after tf is e−δtfg(0)dt.dq. As

for the costs, they are diminished by e−δtff ′(q)dt.dq before tf and increased by

e−δtf
(
f(q) + c0

)
dt.dq
q

after tf . So the overall variation in profit is proportional to:

g(0)− g(q) + f ′(q)−
f(q) + c0

q
= g(0)− g(q) > 0.

The deviation is thus profitable, which means that the path obtained in Section
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3.2 cannot be an equilibrium. But that path was shown to be the only potential

equilibrium. The conclusion is that no equilibrium exists in the no-storage case,

which proves Proposition 1.

4 Extraction with storage

4.1 The setup

We now consider the case where storage becomes possible (i.e., the constraint It = 0

is relaxed) and investigate whether a market equilibrium exists. The strategy will be

very similar to the no-storage case, with - however - very different results in the end.

In the first section we look at all potential equilibrium paths, just like in Section 3.2.

The problem is of course more complex, as there are now two control variables and

two stocks instead of only one, but as can be seen in Proposition 3, we are able to

provide a full characterization of the potential equilibrium paths. They have to be

like the ones depicted in Figure 1. The difference with the no-storage case mainly

comes from the second part of the analysis where we discuss whether these potential

equilibrium paths could be real equilibrium paths. In contradistinction with the

no-storage case, where no equilibrium exists, we will show that, under some broad

technical conditions, these potential equilibrium paths are in fact true equilibrium

paths.

As dealing with the storage case significantly increases the complexity of the

problem, we replace Assumption 2 by a slightly stronger statement, which is

Assumption 3 The inverse demand and cost functions are such that:

g(q) > f ′(q).

This assumption rules out the possibility of having an equilibrium path where

some but not all resources are extracted.6 In case of storage, there are still some

sales (from inventories) after the firm closes. The market price is then typically lower

than g(0) just after the end of the extraction period. Assumption 2 is then no longer

sufficient to guarantee that all resources must be extracted. However, it will be shown

that sales from inventory only occur at a rate lower than q, the market price being

then above g(q). Whenever Assumption 3 is verified, the firm would prefer to extract

the remaining resources at rate q rather than closing and leaving them under the

ground for ever.

6In the no-storage case, the assumption g(0) > f ′(q) was sufficient to show that all resources are
extracted, the intuition being that rather than stopping the extraction the firm should continue it
at rate q and sell it at the market price, g(0).
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In presence of storage, the problem of the firm is given in Equation (3) with

no additional constraint. As our objective is to prove that general equilibrium may

exist we restrict, without loss of generality, our attention to a price path that is

continuous.7 We consider the optimal extraction problem when storage is possible

and start with a result on the different time periods.

Proposition 2 (Different periods) If an equilibrium exists, optimal extraction with

storage is characterized by three dates 0 ≤ t∗1 < t∗2 < t∗f such that

• between dates 0 to t∗1, there is extraction without storage;

• between dates t∗1 and t∗2, there is positive extraction, inventories build up, and

the extraction stops at date t∗2;

• between dates t∗2 and t∗f , the inventory is sold and is exhausted at date t∗f .

Proof. Looking at whether inventories It and the extraction flows qt are positive

or equal to zero we can distinguish four states.

State 1. It = 0 and qt = 0: The firm is no longer extracting, has no positive

inventory and, because of Assumption 1, cannot reopen. Such a state is thus an

absorbing state.

State 2. It > 0 and qt = 0: There is no extraction but the firm has positive

inventories, which it is selling observing demand g(.). Inventory is exhausted when

sales become zero. As the firm cannot reopen, State 2 is necessarily followed in finite

time by State 1.

State 3. It > 0 and qt > 0: Given that average extraction costs tend to +∞
when q tends to zero, such a state with positive extraction cannot last for ever in an

equilibrium. Moreover, as will be shown in Section 4.2.3, in an equilibrium one must

have ∂It
∂t
> 0 in a period where It > 0 and qt > 0. Thus State 3 can only be followed

by State 2. Moreover, since reopening is not possible, the only other period that may

precede State 3, if any, is State 4.

State 4. It = 0 and qt > 0: Again, such a state cannot last for ever in an

equilibrium since that average extraction costs tend to +∞ when q tends to zero.

From the previous section, we know it cannot be followed by State 1 in an equilibrium

(otherwise we would have a contradiction of Proposition 1). Nor can it be followed

by State 2, since building inventories requires having qt > 0. Thus, if such a state

exists, it is necessarily followed by State 3.

From Proposition 2 we conclude that only two types of trajectories are possible.

In the first, State 4 never exists, and we have the sequence State 3 - State 2 - State

1. Alternatively, we start with State 4 and we have the sequence State 4 - State 3

7It can be proved, using similar arguments that those used to establish Proposition 1, that no
general equilibrium may be supported by discontinuous price paths.
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- State 2 - State 1. We can thus define dates 0 ≤ t∗1 < t∗2 < t∗f such that we have

a phase of extraction without storage between time 0 and t∗1, extraction and storage

between t∗1 and t∗2 and sale out of the storage between t∗1 and t∗f . When t∗1 = 0 the

first phase is inexistent.

4.2 Potential equilibrium paths

Proposition 3 (Characterization of optimal paths with storage) If the equi-

librium with possible storage exists, we have that

• resource sales are continuously decreasing and necessarily reach zero in finite

time,

• the price is continuously increasing up to the maximal value g(0),

• extraction quantities are decreasing in the initial period without storage (if this

period exists) but unambiguously increasing throughout the period in which in-

ventories are built up,

• the size of initial resource stock unambiguously determines whether the initial

period without inventories exists.

Proof. We present the detailed proof in the following Subsections 4.2.1-4.2.5.

Specifically, we first characterize the optimal controls in Subsection 4.2.1, then explain

all the different States, as defined in Proposition 2, in Subsections 4.2.2-4.2.4 and,

finally, prove the statements on initial resource conditions in Subsection 4.2.5.

4.2.1 Optimal controls

We start our proof by formally characterizing the controls for the two possible tra-

jectories t∗1 = 0 and t∗1 > 0.

Case 1. t∗1 = 0. There is no period of extraction without storage; the dynamics of

optimal controls are given by:

∀t ∈ [0, t∗2], q∗t = f ′−1(eδtf ′(q∗0)), (12)

∀t ∈ [0, t∗f ], s
∗
t = g−1(eδtg(s∗0)), (13)

where the dates t∗2 and t∗f are determined as follows:

eδt
∗
2 =

f ′(q)

f ′(q∗0)
, (14)

eδt
∗
f =

g(0)

g(s∗0)
. (15)
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The resource constraint pins down the values s∗0 and q∗0:

R0 =
1

δ

ˆ q∗0

q

u
f ′′(u)

f ′(u)
du = − 1

δ

ˆ s∗0

0

u
g′(u)

g(u)
du (16)

The optimal price path P ∗ is determined as follows:

P ∗t =




g(s∗t ) if t ∈ [0, t∗f ],

g(0) if t ≥ t∗f .
(17)

Case 2. t∗1 > 0. There is a period of extraction prior to building up storage. The

dynamics of optimal controls are then given by:

∀t ∈ [0, t∗1], q∗t = s∗t = π′−1(eδtπ′(q∗0)), (18)

∀t ∈ [t∗1, t
∗
2], q∗t = f ′−1(eδtf ′(q∗1)), (19)

∀t ∈ [t∗1, t
∗
f ], s

∗
t = g−1(eδtg(q∗1)), (20)

where the dates t∗1, t∗2 and t∗f are determined as follows:

eδt
∗
1 =

π(q∗1)

π(q∗0)
, (21)

eδ(t
∗
2−t∗1) =

f ′(q)

f ′(q∗1)
, (22)

eδ(t
∗
f−t∗1) =

g(0)

g(q∗1)
. (23)

The resource constraint between dates t∗1 and t∗2 pins down the values q∗1:

R∗1 =
1

δ

ˆ q

q∗1

u
f ′′(u)

f ′(u)
du = − 1

δ

ˆ q∗1

0

u
g′(u)

g(u)
du,

while the resource constraint between dates 0 and t∗1 pins down q∗0:

R0 −R∗1 =
1

δ

ˆ q∗0

q∗1

u
f ′′(u)

f ′(u)
du. (24)

The optimal price path P ∗ is determined as follows:

P ∗t =





g(q∗t ) if t ∈ [0, t∗1],

g(s∗t ) if t ∈ [t∗1, t
∗
f ],

g(0) if t ≥ t∗f .

(25)
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We are now ready to analyze the different States in the following Subsections.

4.2.2 Extraction without storage (State 4)

Before date t1, the inventory is zero, which implies that st = qt. The firm’s program

is

sup
q∈Ω×Ω

{
J [q] =

ˆ t1

0

e−δt (Ptqt − f(qt)− c01qt>0) dt

}
(26)

s.t.
∂Rt

∂t
= −qt

R0 = R0 > 0

Rt1 = R1 > 0

Rt ≥ 0.

During this time interval the situation is very similar to extraction studied in Sec-

tion 3.1. There is a single control q and it is straightforward to prove that the co-state

variable associated to the state variable R is constant and equal to e−δt(P ∗t − f ′(q∗t )),
where the optimal extraction path is denoted q∗ and the optimal price path P ∗. More-

over, the transversality condition at date t1 imposes that the co-state associated to

the state variable R is continuous in t1, when exiting the zone of a binding constraint

on the state variable I. Since the co-state is constant both before and after t1, its

value must be the same for all t between 0 and t2:

∀t ∈ [0, t2], e−δt(P ∗t − f ′(q∗t )) = e−δt2(P ∗t2 − f ′(q∗t2)).

More specifically, between 0 and t1, the optimal extraction and the optimal price

at the equilibrium are characterized as follows:

∀t ∈ [0, t1], e−δtπ(q∗t ) = e−δt1π(q∗t1), (27)

P ∗t = g(q∗t ). (28)

Equation (27) together with the continuity of the price (that we impose for the

equilibrium to hold), implies that the optimal extraction is continuous over [0, t2],

which in turns implies that at date t1, the optimal sale flow is equal to the optimal

extraction flow (otherwise the price would be discontinuous):

s∗t1 = q∗t1 = q1,

where q1 ∈ R+ denotes the common value.
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4.2.3 Extraction and storage (State 3)

State 3 is the central phase of the problem exhibiting simultaneous extraction and

storage. In order to use standard notations in optimal control, we define BI =

{(R, I) ∈ R2| − I ≤ 0} and BR = {(R, I) ∈ R2| −R ≤ 0}. As long as state variables

do not belong to the frontier of one of this set for a positive measure of time, the

firm can manage two controls: the extraction flow q and the sale flow s. We denote

by [t1, t2] the time interval for which the two controls are available. The frontier of

BR is absorbing and as explained below, it is not possible to reach the frontier of BI

once in [t1, t2]. It must therefore be the case that at date t1, the inventory is null and

that at date t2, the resources are exhausted.

More precisely, total resource stock Rt varies between R1 and 0, where R1 is

the remaining level of resources at date t1, which obviously depends on the firm’s

behavior before t1. The date t2 is defined as the first date at which the resources

are exhausted. Inventory I is zero at the initial date t1 and needs to remain positive

between both dates (the firm cannot sell resources that have not been extracted).

The resource firm’s program between dates t1 and t2 is as follows:

sup
{q,s}

{
J [q, s] =

ˆ t2

t1

e−δt (Ptst − f(qt)− c01qt>0) dt

}
(29)

s.t.
∂Rt

∂t
= −q(t),

∂It
∂t

= qt − st,

Rt1 = R1 > 0,

Rt2 = 0,

It1 = 0,

It ≥ 0, Rt ≥ 0.

The optimal control program (29) features two state constraints: inventory and

resources both have to remain non-negative over the period [t1, t2]. The period [t1, t2]

is precisely defined as the period of time during which the two controls are available.

If we denote by p = [pR, pI ] : R+ → R2 the vector of co-state variables corre-

sponding to the two state variables R and I, the Hamiltonian of the system (29) can

be expressed as follows:

H(R, I, p, q, s, t) = −qpR + (q − s)pI + e−δt (Pts− f(q)− c01q>0) .

The Pontryagin Maximum Principle tells us that state and co-state variables verify
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the following equations for all t ∈ [t1, t2]:

∂pR,t
∂t

= −∂H
∂R

(R, I, p, q, s, t) = 0,

∂pI,t
∂t

= −∂H
∂I

(R, I, p, q, s, t) = 0,

∂Rt

∂t
=
∂H

∂px
(R, I, p, q, s, t) = −q,

∂It
∂t

=
∂H

∂py
(R, I, p, q, s, t) = q − s,

and that the Hamiltonian solves:

H(Rt, It, pt, qt, st, t) = max
a,b

(
−apR,t + (a− b)pI,t + e−δt (Ptb− f(a)− c01a>0)

)
.

We deduce that co-state variables are constant and that for all t ∈ [t1, t2], the

optimal controls (q∗, s∗) verify the following equations.

pR,t = pR

pI,t = pI

e−δtf ′(q∗t ) = pI − pR

s∗t =





∞ if e−δtPt > pI

0 if e−δtPt < pI

≥ 0 if e−δtPt = pI

This implies that we must have q∗t > 0 at the equilibrium. Moreover, at the

equilibrium, we cannot have s∗t = ∞ or s∗t = 0: It must therefore be the case that

the optimal price path P ∗ is such that for all t ∈ [t1, t2], we have:

e−δtP ∗t = pI . (30)

and

e−δtf ′(q∗t ) = pI − pR = e−δt2f ′(q∗t2). (31)

From this expression we derive that q∗t is increasing over [t1, t2], while s∗t is decreas-

ing. Increasing extraction over time emerges because only extension of the extraction

quantity allows the firm to keep discounted marginal cost constant, as requested by

Eqn. (31). This proves the middle part of Proposition 3. Moreover since It1 = 0

and stocks cannot be negative, we must have q∗t∗1 ≥ s∗t∗1 . It follows that we can never

obtain a null inventory in [t1, t2]: the set BI described above cannot be reached.

This confirms that the no-inventory phase can only occur at the beginning of the

extraction.
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The Hamiltonian expression therefore becomes:

H(R∗t , I
∗
t , pt, q

∗
t , s
∗
t , t) = q∗t (pI − pR)− s∗tpI + e−δt (P ∗t s

∗
t − f(q∗t )− c0) ,

= e−δt (q∗t f
′(q∗t )− f(q∗t )− c0) . (32)

4.2.4 Depletion of the storage (State 2)

Starting from date t2 there is no more extraction. Since re-opening is impossible, the

firm is left with a single control s. The firm’s program becomes:

sup
s∈Ω

{
J [s] =

ˆ tf

t2

e−δtPtstdt

}
(33)

s.t.
∂It
∂t

= −st,

It2 > 0,

It ≥ 0.

Using the Maximum principle, we obtain that e−δtP ∗t must be constant at the

equilibrium for any t ∈ [t2, tf ]. Since from (30), we already know that e−δtP ∗t is also

constant for t ∈ [t1, t2]. We deduce that for the price to be continuous, we must

have:8

∀t ∈ [t1, tf ], e
−δtP ∗t = pI .

Moreover, for the price to be continuous after date tf , the sale value at date tf
must be zero: s∗tf = 0, which implies that:

∀t ∈ [t1, tf ], e
−δtg(s∗t ) = pI = e−δtfg(0), (34)

where the continuity of the price implies that the optimal sale flow s∗ is also contin-

uous over [t1, tf ].

We remark that the Hamiltonian is zero in [t1, tf ]. The continuity of the Hamilto-

nian in t1 implies from (32) that q∗t2 = q (where q is defined in (1)) and (31) becomes

∀t ∈ [t1, t2], e−δtf ′(q∗t ) = e−δt2f ′(q). (35)

4.2.5 Initial resource endowment

We have two conditions for resource quantities: the first states that total extracted

quantity is equal to R0, while the second says that everything that is sold should

8Even without the assumption of a continuous price, the transversality condition at date t2
imposes that the co-state pI associated to the state variable I is continuous in t2, when entering the
zone of a binding constraint on the state variable R. Since the costate is constant both before and
after t2, its value must be the same for all t between t1 and tf .
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actually be extracted. This last condition implies that:

R0 =

ˆ t2

t1

q∗t dt =

ˆ tf

t1

s∗tdt. (36)

Using equations (34) and (35), we obtain that the above condition becomes:

ˆ t2

t1

f ′−1(eδ(t−t2)f ′(q))dt =

ˆ tf

t1

g−1(eδ(t−tf )g(0))dt.

Using a change of variable (x = f ′−1(eδ(t−t2)f ′(q)) in the first integral and x =

g−1(eδ(t−tf )g(0)) in the second one), we obtain:

ˆ q

qt1

x
f ′′(x)

f ′(x)
dx =

ˆ st1

0

x
−g′(x)

g(x)
dx,

with qt1 ≥ st1 ≥ 0 (the sold quantity should be greater than the extracted since there

is no inventory at t1).

We define a maximal quantity R∗1 that can be extracted between dates t∗1 and

t∗2 when qt∗1 = st∗1 = q∗1, i.e. during the period where the firm holds a positive

inventory. The flow q∗1 denotes the minimal rate of extraction that can be observed

in an equilibrium with storage. Both variables R∗1 and q∗1 ∈ [0, q] are formally given

by:

R∗1 =
1

δ

ˆ q

q∗1

x
f ′′(x)

f ′(x)
dx =

1

δ

ˆ q∗1

0

x
−g′(x)

g(x)
dx. (37)

Since q 7→ 1
δ

´ q
q
xf
′′(x)
f ′(x)

dx − 1
δ

´ q
0
x−g

′(x)
g(x)

dx is strictly decreasing, positive in 0 and

negative in q, it is clear from the second part of equality that q∗1 is well-defined, unique

and in [0, q]. Moreover, the quantity R∗1 > 0 is strictly positive.

We get the two cases of Subsection 4.2.1, that is either t∗1 = 0 or t∗1 > 0, depending

on whether R0 is greater than R∗1 or not. If R0 ≤ R∗1, there is no period of extraction

without storage. If R0 > R∗1, there is a period of extraction without storage, whose

length corresponds to the time needed to extract the quantity R0 − R∗1. Given that

R∗1 and q∗1 are defined in equation (37) we can formally distinguish our two cases. If

R0 ≤ R∗1, optimal controls s∗ and q∗ are characterized by their initial values 0 ≤ s∗0 ≤
q∗0 ≤ q defined in equation (16), while dates t∗2 and t∗f are defined in equations (14)

and (15). In the second case when R0 > R∗1, the optimal control q∗ is characterized

by its initial value q∗0 ≥ q∗1 defined in equation (24), while dates t∗1, t∗2 and t∗f are

defined in equations (21), (22) and (23).

Since we have by now fully characterized extraction and sales paths in the different

States and derived the impact of initial resource endowment the proof of Proposition

3 is completed.
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4.3 Equilibrium existence

Having obtained a precise description of all potential equilibrium paths, we now

investigate whether these paths may actually correspond to market equilibria. The

question is whether the strategy of the firm depicted in Proposition 3 is actually the

optimal strategy of the firm (prices being considered as given). We know that the

optimal strategy must fulfill the first order conditions. However there may be several

trajectories that fulfill the first order conditions but assume different terminal dates

of extraction (which themselves determine the optimal date at which inventories start

to be built).

4.3.1 General functions

We first state the following result:

Proposition 4 (Equilibrium existence) There exists a resource level R > R∗1
(possibly equal to infinity), such that if R0 < R, an equilibrium to the optimal extrac-

tion problem always exists.

Proof. The proof that can be found in Appendix A involves looking at whether

there could be profitable deviations from the potential equilibrium path for the firm.

Actually, three deviations have to be considered: (i) the firm may choose to extract

but to leave resources below the ground, (ii) the firm may choose not to start the

extraction and (iii) the firm may choose to end the extraction at another date than

t∗2 while extracting everything.

First, the firm may choose to extract but not everything. In Appendix, we rule out

the possibility of such marginal deviations and show that, once the firm has started

the extraction, it will only stop when resources below the ground are exhausted.

Second, the firm may choose not to start the extraction, if the intertemporal

profit associated to extracting R0 with the price path P ∗ is negative. Indeed, due to

the payment of a maintenance cost c0, it is not always the case that the extraction

generates positive intertemporal profits (as it is the case with standard convex costs).

However, Assumption 3 guarantees that at least when the amount of initial resources

is not too large, the intertemporal profit is positive, so that the firm always opts

for extracting. The intuition is as follows. Assumption 3 (i.e., π(q) > 0) and the

fact that the marginal profit π is a decreasing function of the extraction flow imply

that q should not be too large. Moreover, using the definition of q in equation (2),

the maintenance cost can be expressed as an increasing function of q. Therefore,

Assumption 3 can also be interpreted as the maintenance cost c0 being not too large.

However, even though the maintenance cost is not too high, the intertemporal profit

might be negative when the payment for the maintenance cost lasts for too long,

i.e., when the quantity R0 to extract is very large. In consequence, we need to
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impose an upper bound Ra on this initial quantity R0 to guarantee the positivity of

intertemporal profits. We can show that the bound Ra is strictly greater than R∗1.

The case of Ra being infinite corresponds to the case when it is always optimal to

fully exhaust the resource.

Third, the firm may extract the whole stock R0 but opt for an extraction date

which is different from the optimal date t∗2. We need to distinguish two cases depend-

ing on whether R0 is smaller than R∗1 or not. In the first case when R0 ≤ R∗1, we

prove that if the extraction stops before (resp. after) the optimal date t∗2, the firm will

extract less than (resp. more) than R0. Therefore, there is no possible deviation and

the only extraction date that is compatible with the resource constraint is t∗2. The

firm follows thus the optimal extraction path. Regarding the sales path, there is no

deviation that provides a strictly greater profit when following the optimal sales path.

In short, when R0 ≤ R∗1, the firm follows optimal extraction paths both for extract-

ing and selling. When R0 > R∗1, as for the deviation with respect to the extraction

quantity, we cannot rule out all deviations with respect to the final extraction date.

The firm may opt for an earlier or a later final extraction date. The intuition is as

follows. On the one hand, since the optimal extraction path is non-monotonic when

R0 > R∗1 (see Figure 1 or Proposition 3 for example), it is possible that the firm stops

extracting earlier, while it leaves nothing in the ground and extracts R0. Stopping

the extraction earlier may yield a higher profit because of the fixed maintenance cost

c0 that will be paid for a shorter period of time. On the other hand, an extraction

stopping later than the optimal date may also yield a higher profit, even if it is slightly

less intuitive. Indeed, since the price path is an increasing function of time and the

optimal extraction path non-monotonic, the firm may choose to postpone the extrac-

tion date to take advantage of the higher price at later dates that may compensate

for paying the maintenance cost for a longer period of time. A later final extraction

date may yield a higher profit. As a consequence, to circumvent these difficulties, we

define a threshold Rb for the amount of initial resources, below which the firm always

follows the optimal extraction path and never deviates. In the appendix we prove

that such a threshold exists and is strictly greater than R∗1. The case of Rb being

infinite corresponds to the case when the firm always follows the optimal extraction

path.

Finally, as long as the total stock of resources is below the level R = min(Ra, Rb),

there is no possible deviation and the equilibrium always exists.

The fact that R > R∗1 indicates that both equilibrium paths discussed in Propo-

sition 3 and illustrated in Figure 1 can be observed.
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4.3.2 Specifying cost and demand functions

As a complement to Proposition 4, we now demonstrate, that under some additional

assumptions on the cost and inverse demand function, we have R = +∞, which

implies the existence of an equilibrium whatever the initial size of resource stocks.

Proposition 5 (Equilibrium existence for convex marginal costs) Provided that

the marginal cost function is convex and null in zero (f ′′′ ≥ 0 and f ′(0) = 0) and

that the function q → qg′(q) is decreasing an equilibrium exists for any value of R0.

Proof. The proof strategy consists in proving that the deviations that are possible

when the resource quantity R0 is greater than R∗1 can be ruled out under some

technical conditions. First, regarding the deviation with respect to the extraction

quantity, when the marginal cost function is convex and null in zero, we show that

the only terminal date which is compatible with the resource constraint is the date

t∗2 of the optimal extraction path. Second, regarding the deviation with respect to

the extraction date, when q → qg′(q) is decreasing, we prove that the intertemporal

profit is always positive and the firm always prefers to extract all resources than none.

Both proofs are rather technical.

Proposition 5 states than an equilibrium may always exist under certain tech-

nical assumptions, no matter what is the quantity of available resources. The first

condition has a straightforward interpretation in terms of convexity of the marginal

cost. Moreover, even if the second condition may look fairly technical, it also has a

straightforward and intuitive economic implication. Indeed, this condition translates

into a condition on the “instantaneous” profit. If q → qg′(q) is decreasing, then the

“instantaneous” profit g(q)q − f(q) is a concave function of the extracted quantity,

which is a standard condition in the industrial organization literature.

5 Conclusions

The present paper shows that equilibrium on non-renewable resource markets exists

even when extraction costs are non-convex, once we realistically include resource in-

ventories in the analysis. The setup does not rely on narrow assumptions so that

all the proofs can be given under very general conditions. The optimum extraction

path is non monotonic, which emerges to be perfectly compatible with constant re-

source stocks. Extraction necessarily involves increasing quantities at the end of the

extraction period, which is a novelty in literature, before demand is met by sales

from inventories. The underlying reason is that resource extractors need to increase

extraction quantities in order to obtain discounted resource rents which are constant.

Two different development paths are found to exist, depending on whether initial

resource stock is larger or smaller than a threshold value depending on cost and

25



demand functions. If initial stock is low, the firm starts building up inventories from

period zero on. The extraction path is increasing over time up to the point where

firms stop extraction and start to sell out of inventories. If initial resource stock is

high, exceeding the threshold, the previous pattern is preceded by a period in which

extraction is positive but storage is not yet used. In that period, the extraction and

sale flows are equal and decreasing over time.

The present paper addresses one of the main puzzles in resource economics: Why

do we see many well functioning resource markets in reality despite non convex ex-

traction costs? The paper complements alternative explanations for this empirical

fact in earlier literature but avoids very specific assumptions like chattering controls

or capacity constraints. It goes back to the original idea of including inventories

and finds that this generally valid assumption is sufficient to prove the existence of

equilibrium.
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Appendix

A Proof of Proposition 4

In this proof, we check that the necessary conditions of equations (12)–(25) define an
equilibrium. To do so, we verify that no deviation is profitable. Deviations can be
of three types: (i) the firm may choose to extract but to leave resources below the
ground, (ii) the firm may choose not to start the extraction and (iii) the firm may
choose to stop extracting at another date than the optimal date t∗2. These possible
deviations are discussed in Sections A.1 to A.3.

A.1 First deviation: Extracting but less than R0

We prove that given the price path P ∗, once the extraction has started, the firm will
extract everything and leaves no resources below the ground.

We consider a deviation (q, s) corresponding to the extraction of the amount
R ≤ R0, while the firm faces the optimal price path P ∗. We denote t2 the end of
the extraction and tf the end of the sale flow. Remark that the optimal price path
P ∗ depends on R0 but is independent of R. The plan (q, s) is characterized using a
program similar to (3) and involves distinguishing two cases depending on R0 ≥ R∗1
or not.

First case: R0 ≤ R∗1. The intertemporal profit associated to this deviation is:

JR[q, s] =

ˆ tf

0

e−δtP ∗t stdt−
ˆ t2

0

e−δt(f(qt) + c0)dt, (38)

where we use the subscript R to highlight the dependence in R and where the controls
(q, s) and the optimal price P ∗ can be (indirectly for controls – directly for the price)
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derived from equations (12)–(17) and can be expressed as follows:

e−δtg(st) = g(s0),

e−δtf ′(qt) = f ′(q0),ˆ tf

0

stdt =

ˆ t2

0

qtdt = R ≤ R0,

e−δtP ∗t = g(s∗0).

Using the above definitions, equation (38) simplifies into JR[q, s] = g(s∗0)R −´ t2
0
e−δt(f(qt) + c0)dt, whose derivation with respect to R yields:

∂JR[q, s]

∂R
= g(s∗0)− e−δt2(f(q) + c0)

∂t2
∂R
−
ˆ t2

0

e−δtf ′(qt)
∂qt
∂R

dt

= g(s∗0)− e−δt2qf ′(q)∂t2
∂R
− e−δt2f ′(q)

ˆ t2

0

∂qt
∂R

dt

= g(s∗0)− e−δt2f ′(q)

since the resource constraint
´ tf

0
qtdt = R implies after derivation q

∂tf
∂R

+
´ tf

0
∂qt
∂R
dt.

Since t2 is an increasing function of R, R 7→ ∂JR[q,s]
∂R

admits at most one zero on
[0, R0] and R 7→ JR[q, s] is either maximal in 0 or in R0. Once the extraction has
started, the firm will extract R0. The firm will therefore extract either everything or
nothing.

Second case: R0 ≥ R∗1. The extraction q is assumed to stop at a date t2 ≤ t∗2.
Controls (q, s) and the optimal price P ∗ can be derived from equations (18)–(25). We
distinguish again two cases, depending on t2 ≥ t∗1 or not.

Case t2 ≤ t∗1. The intertemporal profit JR[q, s] can be expressed as follows:

JR[q, s] =

ˆ tf

0

e−δt(P ∗t qt − f(qt)− c0)dt, (39)

where q follows:

∀t ∈ [0, tf ], e
−δt(P ∗t − f ′(qt)) = e−δtf (P ∗tf − f

′(q)),

ˆ tf

0

qtdt = R. (40)
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The derivation of (39) with respect to R yields:

∂JR[q, s]

∂R
= e−δtf (P ∗tf q − f(q)− c0)

∂tf
∂R

+

ˆ tf

0

e−δt(P ∗t − f ′(qt))
∂qt
∂R

dt

= e−δtf (P ∗tf − f
′(q))

(
q
∂tf
∂R

+

ˆ tf

0

∂qt
∂R

dt

)

= e−δtf (P ∗tf − f
′(q)), (41)

since the derivation of (40) wrt R implies q
∂tf
∂R

+
´ tf

0
∂qt
∂R
dt = 1.

Case t2 ≥ t∗1. We have:

JR[q, s] =

ˆ t∗1

0

e−δt(P ∗t qt−f(qt)−c0)dt+

ˆ tf

t∗1

e−δtP ∗t stdt−
ˆ t2

t∗1

e−δt(f(qt)+c0)dt, (42)

where controls (q,s) verify:

e−δt(P ∗t − f ′(qt)) = e−δt
∗
1(P ∗t∗1 − f

′(q1))

e−δtg(st) = e−δt
∗
1g(q1),

e−δtf ′(qt) = e−δt
∗
1f ′(q1),ˆ tf

t∗1

stdt =

ˆ t2

t∗1

qtdt = R−
ˆ t∗1

0

qtdt. (43)

The derivation of (42) yields:

∂JR[q, s]

∂R
=

ˆ t∗1

0

e−δt(P ∗t − f ′(qt))
∂qt
∂R

dt+ e−δt
∗
1P ∗t∗1(1−

ˆ t∗1

0

∂qt
∂R

dt)

− e−δt2(f(q) + c0)dt
∂t2
∂R
−
ˆ t2

t∗1

e−δtf ′(qt)
∂qt
∂R

dt

= e−δt
∗
1(P ∗t∗1 − f

′(qt∗1))

ˆ t∗1

0

∂qt
∂R

dt+ e−δt
∗
1P ∗t∗1(1−

ˆ t∗1

0

∂qt
∂R

dt)

− e−δt∗1f ′(qt∗1)

(
q
∂t2
∂R

+

ˆ t2

t∗1

∂qt
∂R

dt

)

Moreover, we have by derivation of (43), q ∂t2
∂R

+
´ t2
t∗1

∂qt
∂R
dt = 1−

´ t∗1
0

∂qt
∂R
dt, which implies:

∂JR[q, s]

∂R
= e−δt

∗
1(P ∗t∗1 − f

′(qt∗1)) = e−δtf (P ∗tf − f
′(q)) (44)

Conclusion of the second case R0 ≥ R∗1. From (41) and (44), we deduce that

for any R ∈ [0, R0] and thus for any t2 ∈ [0, t∗2], we have ∂JR[q,s]
∂R

= e−δtf (g(q∗tf )−f ′(q)).
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Since π(q∗1) > 0, we know from Proposition 3 that t 7→ P ∗t is increasing. Thus R 7→
∂JR[q,s]
∂R

admits at most one zero for R ∈ [0, R0] and R 7→ JR[q, s] is maximal either
for R = 0 (t2 = 0, i.e., no extraction) or R = R0 (t2 = t∗2, i.e., full extraction). Once
the extraction has started, the firm will extract everything and leaves no resources
below the ground.

A.2 Second deviation: Not starting the extraction

We now check that not starting the extraction cannot be a possible deviation. We
denote JR0 [q

∗, s∗] the intertemporal profit associated to the extraction of R0, when
the firm faces the price path P ∗ and follows the plan (q∗, s∗). Note that in this case
(compared to R 7→ JR), both the optimal plan (q∗, s∗) and the price P ∗ depend on
R0. These quantities are defined in equations (12)–(17).

Since no extraction corresponds to a zero intertemporal profit: JR0=0[q∗, s∗] = 0,
we need to prove that JR0 [q

∗, s∗] > 0 for any 0 < R0 ≤ R∗1.
The intertemporal profit can also be expressed as follows:

JR0 [q
∗, s∗] = g(s∗0)R0 −

ˆ t∗2

0

e−δt(f(q∗t ) + c0)dt

Since e−δtf ′(q∗t ) = e−δt
∗
2f ′(q) = f ′(q∗0) for any 0 ≤ t ≤ t∗2, we obtain:

JR0 [q
∗, s∗] =

1

δ
(g(s∗0)δR0 + ϕ(q∗0)− ϕ(q)),

where: ϕ(q) = qf ′(q)− f(q).

Since δR0 =
´ q
q∗0
uf
′′(u)
f ′(u)

du, we have:

JR0 [q
∗, s∗] =

1

δ
(g(s∗0)

ˆ q

q∗0

u
f ′′(u)

f ′(u)
du+ ϕ(q∗0)− ϕ(q)). (45)

Using that f is convex, we obtain:

ˆ q

q∗0

u
f ′′(u)

f ′(u)
du ≥ 1

f ′(q)

ˆ q

q∗0

uf ′′(u)du

≥
ϕ(q)− ϕ(q∗0)

f ′(q)
≥
ϕ(q)− ϕ(q∗0)

g(q)
,

where the last equality comes from the fact that π(q) ≥ 0 and q ≥ q∗0. We deduce:

JR0 [q
∗, s∗] ≥ 1

δ

g(s∗0)− g(q)

g(q)
(ϕ(q)− ϕ(q∗0)) ≥ 0,

where the inequality sign is strict for any R0 > 0.
To conclude, we define Ra = inf{R0 ≥ R∗1, JR0 [q

∗, s∗] > 0}. Using our above
result, we deduce that Ra > R∗1 by continuity, which proves the result.
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A.3 Third deviation: Extracting R0 but opting for other ex-
traction and sale paths

We prove that there exists a resource level Rb > R∗1 (possibly equal to infinity), such
that if R0 < Rb, a firm extracting R0 always follows the optimal extraction plan
(q∗, s∗) and no deviation is profitable. The proof involves two steps: (i) we start with
proving that there is no deviation when R0 ≤ R∗1; (ii) we find a threshold Rb > R∗1
such that no deviation holds when R0 < Rb.

A.3.1 No deviation when R0 ≤ R∗1.

We denote (q, s) the optimal plan of the firm. We denote τ2 the date at which the
extraction q stops. The plan (q, s) is characterized by equation similar to (12)–(16).
We distinguish two cases depending on whether τ2 is smaller than t∗f or not.

The extraction stops before t∗f : τ2 ≤ t∗f . The extraction plan is characterized
as follows:

∀t ∈ [0, τ2], f ′(qt) = f ′(q)eδ(t−τ2).

We know that if τ2 = t∗2 or equivalently q0 = q∗0, we have qt = q∗t . Let us consider
τ2 7→

´ τ2
0
qtdt. After a change of variable and using resource constraint in equation

(16), we have: ˆ τ2

0

qtdt−R0 =
1

δ

ˆ q∗0

q0

u
f ′′(u)

f ′(u)
du.

The resource constraint therefore imposes q0 = q∗0 and therefore qt = q∗t .

The extraction stops after t∗f : τ2 > t∗f . The extraction plan q is characterized
as follows:

∀t ∈ [0, t∗f ], f
′(qt) = f ′(qt∗f )e

δ(t−t∗f ),

∀t ∈ [t∗f , τ2], f ′(qt) = g(0) + (f ′(q)− g(0))eδ(t−τ2).

Since f ′(q) − g(0) ≤ −π(q) < 0, qt is decreasing over [t∗f , τ2]. It implies that if
τ2 > t∗f , then qt∗f > q and for any t ∈ [0, t∗f ], f

′(qt) > f ′(q∗t ): the resource constraint
cannot hold when τ2 > t∗f .

Conclusion for the extraction. The extraction must therefore stop at date τ2 =
t∗2, which implies that the firm must follow the optimal extraction: ∀t ∈ [0, t∗2], qt = q∗t .

The inventory. We assume that the inventory is exhausted at date τf (remark: we
do not prevent q = s and τf = t∗2). Since e−δtP ∗t is decreasing for t ≥ t∗f , it is optimal
for the firm to exhaust inventories before t∗f : τf ≤ t∗f .

We denote JR0 [q, s] the intertemporal profit associated to the plan (q, s).

JR0 [q, s] =

ˆ τf

0

e−δtP ∗t stdt−
ˆ t∗2

0

(f(qt) + c0)dt.
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Using that q = q∗ and e−δtP ∗t = e−δt
∗
fg(0) for 0 ≤ t ≤ t∗f , we deduce that the

difference with the intertemporal profit derived from the optimal extraction plan
JR0 [q, s]− JR0 [q

∗, s∗] can be expressed as follows:

JR0 [q, s]− JR0 [q
∗, s∗] = e−δt

∗
fg(0)(

ˆ τf

0

stdt−
ˆ t∗f

t∗1

s∗tdt) = 0,

because of resource constraints. Therefore, the deviation never strictly dominates the
initial allocation when R0 ≤ R∗1.

A.3.2 Ruling out deviations when R0 ≥ R∗1

Dealing with the case where R0 ≥ R∗1 is more complex and involves three steps: (i)
we show that no storage occurs before date t∗1; (ii) we show that for a deviation to
hold, the extraction must stop after date t∗1; (iii) for deviations whose extraction stops
after date t∗1, we show that they cannot occur provided that R0 ≤ Rb, where Rb > R∗1
is a threshold that we define.

We consider that a firm facing the optimal price path P ∗ defined in (25) chooses
the plan (q, s). We assume that the extraction stops at date τ2.

No storage before date t∗1. We start with the following lemma.

Lemma 1 (No storage before t∗1) Given a price path P ∗, it is never optimal for
the firm to store before date t∗1.

Proof. Using the expression (25) of P ∗ together with (18), we obtain for any
t ∈ [0, t∗1]:

e−δtP ∗t = e−δtg(π−1(eδ(t−t
∗
1)π(q∗1)))

= e−δtf ′(π−1(eδ(t−t
∗
1)π(q∗1))) + e−δt

∗
1π(q∗1)

Since t 7→ e−δtf ′(π−1(eδ(t−t
∗
1)π(q∗1))) is a decreasing function (product of two positive

decreasing functions), the function t 7→ e−δtP ∗t is decreasing over [0, t∗1]. It implies
that the firm prefers to sell as much as possible, rather than to save. There is therefore
no storage before t∗1.

No deviation when the extraction stops before date t∗1: τ2 ≤ t∗1. Since there
is no storage before date t∗1 (Lemma 1), using a similar technique as for the problem
(4) of optimal extraction without storage implies that the extraction path q is such
that e−δt(f ′(qt)− P ∗t ) is constant for any t ∈ [0, τ2]:

f ′(qt)− P ∗t = eδ(t−τ2)(f ′(q)− P ∗τ2)

Since e−δt(f ′(q∗t )− P ∗t ) is also constant for any t ∈ [0, τ2] (equation (18)), we have:

f ′(qt) = f ′(q∗t ) + eδ(t−τ2)(f ′(q)− f ′(q∗τ2)). (46)
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Using the definition (46) of the deviation qt for t ∈ [0, τ2] ⊂ [0, t∗1], we obtain:

ˆ τ2

0

qtdt =

ˆ τ2

0

f ′−1(f ′(q∗t ) + eδ(t−τ2)(f ′(q)− f ′(q∗τ2))dt. (47)

We know that for any t ∈ [0, t∗1], e−δt(P ∗t − f ′(q∗t )) is constant. We have already
proved (see proof of Lemma 1) that t 7→ e−δtP ∗t is decreasing on [0, t∗1]. Therefore t 7→
−e−δtf ′(q∗t ) is increasing. This implies that τ2 7→ f ′−1(f ′(q∗t ) + eδ(t−τ2)(f ′(q)−f ′(q∗τ2))
is increasing and strictly positive on [0, t∗1]. From (47), we deduce that τ2 7→

´ τ2
0
qtdt

is strictly increasing on [0, t∗1]. It implies that if we guarantee that
´ t∗1

0
qtdt < R0, no

deviation is possible if τ2 ≤ t∗1.

Deviations whose extraction stops after t∗1: τ2 > t∗1. Using a similar technique
as in the optimal control problem (3), we obtain that the extraction q is defined as
follows:

{
∀t ∈ [0, t∗1], f ′(qt) = f ′(q∗t ) + eδ(t−t

∗
1)(f ′(q1)− f ′(q∗1)),

∀t ∈ [t∗1, τ2], f ′(qt) = eδ(t−t
∗
1)f ′(q1) = eδ(t−τ2)f ′(q).

(48)

We conclude the proof in two steps. First we define Rb and shows that it exists
and is strictly larger than R∗1. Second, we show that no deviation exists when the
resource level is below Rb.

Definition and existence of Rb. We define Rb ∈ R+ ∪ {∞} as follows:

Rb = sup

{
R0 ≥ R∗1|∃t∗∗2 ≥ t∗2,

{
τ2 ≥ t∗1|

ˆ τ2

0

qtdt = R0

}
= {t∗2, t∗∗2 }

}
. (49)

Notice that we allow for Rb to be infinite. Note that the definition (49) hides several
implicit dependencies. First, as defined in (48), the plan q depends on τ2. Second, q
also depends on R0 through t∗1 and q∗t . Finally both dates t∗1 and t∗2 depends on R0.

The meaning of the level Rb is the following one. For any resource level R0 smaller
than Rb, there are at most two dates (t∗2 and t∗∗2 ) at which the resource constraint
holds. It implies first that it is not possible to find a deviation which extracts resources
faster than the optimal extraction q∗: the other possible deviation will stop extracting
at t∗∗2 after the date t∗2. Because of the time preference and of the fixed-cost c0, the
firm may prefer deviations that extract faster than q∗ to q∗. It is therefore important
to rule them out.

Lemma 2 (Existence of Rb) The maximal resources level Rb defined in (49) exists,
is strictly larger than R∗1 and may be equal to infinity.

Proof.
First, it is clear from the case R0 ≤ R∗1 treated above that the set {R0 ≥ R∗1|∃t∗∗2 ≥

t∗2,
{
τ2 ≥ t∗1|

´ τ2
0
qtdt = R0} = {t∗2, t∗∗2 }

}
is not empty, since R∗1 belongs to it (in that

case, t∗2 is the unique date).
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Second, we can show than whenever R0 − R∗1 is not too large but positive, τ2 7→´ τ2
0
qtdt is increasing for τ2 ≤ t∗2. We have from (48):

ˆ τ2

0

qtdt =

ˆ t∗1

0

qtdt+

ˆ τ2

t∗1

qtdt

=

ˆ t∗1

0

qtdt+

ˆ q

q1

u
f ′′(u)

f ′(u)
du = Q(q1) (50)

with eδτ2 =
f ′(q)
f ′(q1)

: proving that τ2 7→
´ τ2

0
qtdt is increasing for τ2 ∈ [t∗1, t

∗
2] is equivalent

to prove that Q is decreasing for q1 ∈ [q∗1, q]. We have

Q′(q1) =

ˆ t∗1

0

∂qt
∂q1

dt− q1
f ′′(q1)

f ′(q1)
≤ t∗1 sup

t∈[0,t∗1]

∂qt
∂q1

− q1
f ′′(q1)

f ′(q1)
. (51)

From (48), f ′′(qt)
∂qt
∂q1

= eδ(t−t
∗
1)f ′′(q1), so 0 < supt∈[0,t∗1]

∂qt
∂q1
≤ f ′′(q1)

infu∈[q1,q0] f
′′(u)

.

Moreover, from equations (24) and (21), we have:

R0 −R∗1 =

ˆ q∗0

q∗1

u
−π′(u)

π(u)
du > (q∗0 − q∗1) inf

u∈[q∗1 ,q
∗
0 ]
u
−π′(u)

π(u)

and

t∗1 =
1

δ
ln
π(q∗1)

π(q∗0)
≤ 1

δ
ln

π(q∗1)

π(q∗1 +
R0−R∗1

infu∈[q∗1 ,q
∗
0 ] u

−π′(u)
π(u)

)
.

We deduce that

Q′(q1) ≤ 1

δ
ln(

π(q∗1)

π(q∗1 +
R0−R∗1

infu∈[q∗1 ,q
∗
0 ] u

−π′(u)
π(u)

)
)

f ′′(q1)

infu∈[q1,q0] f ′′(u)
− q1

f ′′(q1)

f ′(q1)
,

which can be made negative for any q1 ∈ [q∗1, q] provided that R0 − R∗1 is made
sufficiently small. Remark that it is not fully obvious because q0 and q∗0 depends
(negatively) on R0 −R∗1. However, since both q0 and q∗0 decrease with R0 −R∗1, it is
possible to assume without loss of generality that for not too large R0−R∗1, q0 and q∗0
are bounded by some q0 and q∗0 independent of R0−R∗1, such that infu∈[q1,q0] f

′′(u) ≥
infu∈[q1,q0] f

′′(u). This latter lower bound is independent of R0 − R∗1 and strictly
positive since f ′′ is continuous and [q1, q0] compact. We can then obtain an explicit
bound on R0 −R∗1.

When Q′(q1) is negative for any q1 ∈ [q∗1, q], τ2 = t∗2 is the first date at which´ τ2
0
qtdt = R0. We further need to prove that if R0−R∗1 is not too large, there exists at

most one other date t∗∗2 ≥ t∗2 (or another q∗∗1 < q∗1), such that Q(q∗∗1 ) = R0. From (51),

the sign of Q′ is determined by the following expression Q1(q1) = f ′(q1)
´ t∗1

0
eδ(t−t

∗
1)

f ′′(qt)
dt−

q1. Provided that f ′′ is continuously derivable, one can use the same technique as
above and prove that when R0 − R∗1 is not too large, Q1(q1) is decreasing for any
q1 ≤ q∗1, which guarantees that Q1 admits at most one zero, smaller than q∗1. Since
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Q(q∗1) = R0, there therefore exists at most one other q∗∗1 < q∗1, such that Q(q∗∗1 ) = R0.
We therefore deduce that Rb exists and is such that Rb > R∗1.

No deviation when R0 ≤ Rb. From the definition (49) of Rb, it is sufficient to
prove that the (possible) deviation that stops at date t∗∗2 is dominated by the optimal
extraction stopping at t∗2. We formalize in the following lemma.

Lemma 3 (Optimality of q∗) If there exists another extraction plan q∗∗ stopping

at date t∗∗2 > t∗2 such that
´ t∗∗2

0
q∗∗t dt = R0, then the plan q∗∗ is never preferred to the

optimal plan q∗.

Proof.
We still consider a plan (q, s), in which the extraction stops at date τ2 ≥ t∗2 and

the sale stops at date τf ≥ τ2. The intertemporal profit J [q, s] can be expressed as
follows:

J [q, s] =

ˆ t∗1

0

e−δt(P ∗t qt − f(qt)− c0)dt+ e−δt
∗
1P ∗t∗1

ˆ τf

t∗1

stdt−
ˆ τ2

t∗1

e−δt(f(qt) + c0)dt

We know from (48) that e−δtP ∗t = e−δtf ′(qt)+e−δt
∗
1(P ∗t∗1−f

′(q1)) and from the resource

constraint that
´ τf
t∗1
stdt =

´ τ2
t∗1
qtdt. We deduce:

J [q, s] = e−δt
∗
1(P ∗t∗1 − f

′(q1))

ˆ t∗1

0

qtdt+

ˆ t∗1

0

e−δt(f ′(qt)qt − f(qt)− c0)dt

−
ˆ τ2

t∗1

e−δt(f(qt) + c0)dt+ e−δt
∗
1P ∗t∗1

ˆ τ2

t∗1

qtdt

= e−δt
∗
1(P ∗t∗1 − f

′(q1))

ˆ τ2

0

qtdt+

ˆ t∗1

0

e−δt(f ′(qt)qt − f(qt)− c0)dt

−
ˆ τ2

t∗1

e−δt(f(qt) + c0)dt− e−δt∗1f ′(q1)

ˆ τ2

t∗1

qtdt

Since (48) implies that e−δtf ′(qt) = e−δt
∗
1f ′(q1) for t ≥ t∗1, we have using the expression

(50) of Q(q1):

J [q, s] = e−δt
∗
1(P ∗t∗1 − f

′(q1))Q(q1) +

ˆ τ2

0

e−δt(f ′(qt)qt − f(qt)− c0)dt,

where this expression is valid no matter the value of Q(q1). The derivation with
respect to q1 yields:

∂J [q, s]

∂q1

= e−δt
∗
1(P ∗t∗1 − f

′(q1))Q′(q1)− e−δt∗1f ′′(q1)Q(q1)

+

ˆ τ2

0

e−δtf ′′(qt)qt
∂qt
∂q1

dt,
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since qτ2 = q and f ′(q)q− f(q) = c0. Moreover, from (48), we have for any t ∈ [0, τ2],

e−δtf ′′(qt)
∂qt
∂q1

= e−δt
∗
1f ′′(q1), which implies:

∂J [q, s]

∂q1

= e−δt
∗
1(P ∗t∗1 − f

′(q1))Q′(q1). (52)

Assume that there exists another plan q∗∗ whose terminal date is t∗∗2 > t∗2 and such

that
´ t∗∗2

0
q∗∗t dt = R0. Noting q∗∗1 = q∗∗t∗1 , we have from (48), q∗∗1 < q∗1, since t∗∗2 > t∗2.

We denote J∗∗ (J∗) the profit associated to q∗∗ (q∗). By integration by parts of (52):

J∗∗ − J∗ = e−δt
∗
1

ˆ q∗1

q∗∗1

f ′(q1)Q′(q1)dq1

= e−δt
∗
1R0(f ′(q∗1)− f ′(q∗∗1 ))− e−δt∗1

ˆ q∗1

q∗∗1

f ′′(q1)Q(q1)dq1,

Moreover, Q(q1) ≥ R0 for any q1 ∈ [q∗∗1 , q
∗
1]. Indeed R0 = Q(q∗1) = Q(q∗∗1 ):

otherwise there would exists another q1 in [q∗∗1 , q
∗
1], such that R0 = Q(q1), which is

not possible. Therefore, we deduce (the inequality is strict otherwise Q would be
constant and equal to R0 over [q∗∗1 , q

∗
1]):

J∗∗ − J∗ < e−δt
∗
1R0(f(q∗1)− f(q∗∗1 ))−R0

ˆ q∗1

q∗∗1

f ′′(q1)dq1 < 0.

We conclude that the extraction q∗ is strictly preferred to q∗∗.

Lemma 2 guarantees that we cannot find any extraction plan that terminates
before t∗2, while Lemma 3 ensures that the extraction plan q∗ is preferred to any
extraction plan that stops after t∗2: we deduce that there is no possible deviation for
the extraction.

B Proof of Proposition 5

We prove that adding two assumptions on the shape of f and g implies that an
equilibrium always exists, in other words that R =∞. The proof is in two steps: (i)
when q → qg′(q) is decreasing, the upper bound Ra is infinite and it is always optimal
to extract R0; (ii) when the extraction cost function f is such that the marginal cost
of extraction is convex and null for zero extraction (f ′(0) = 0), the upper bound Rb

is infinite and it is always optimal to follow the plan (q∗, s∗).

B.1 Decreasing q → qg′(q) and Ra =∞
Lemma 4 If q → qg′(q) is decreasing, then Ra =∞.

Proof. We first prove that the intertemporal profit is always positive for large
values of R0. Second, we show that the intertemporal profit (as a function of R0)
admits at most one maximum between R0 = R∗1 and R0 =∞.
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The intertemporal profit JR0 [q
∗, s∗] is positive for large values of R0. We

prove that JR0 [q
∗, s∗] > 0 for any R0 →∞. For any R0 > R∗1, we have:

JR0 [q
∗, s∗] =

ˆ t∗1

0

e−δt(P ∗t q
∗
t − f(q∗t )− c0)dt+

ˆ t∗f

t∗1

e−δtP ∗t s
∗
tdt−

ˆ t∗f

t∗1

e−δt(f(q∗t ) + c0)dt.

(53)
We are interested in the behavior of JR0 [q

∗, s∗] for large R0. Note that in that
case the strategies (q∗, s∗) as well as the optimal price P ∗ depend on R0. Optimal
plan (q∗, s∗) is defined in equations (18)–(25).

It is straightforward to show that forR0 →∞, we have
´ t∗f
t∗1
e−δtP ∗t s

∗
tdt−

´ t∗f
t∗1
e−δt(f(q∗t )+

c0)dt→ 0. Writing P ∗t = π(q∗t ) + f ′(q∗t ), we obtain

lim
R0→∞

JR0 [q
∗, s∗] = lim

R0→∞
π(q∗0)(R0 −R∗1) +

ˆ t∗1

0

e−δt(f ′(q∗t )q
∗
t − f(q∗t )− c0)dt (54)

Since π(q∗1) > 0, for large R0, q∗0 converges towards q∞ = inf {q ≥ 0, π(q) = 0}
(q∞ is unique if π strictly decreasing) and t∗1 converges towards infinity. Therefore,
when R0 → ∞, we have q∗t → q∞ + 1t=t∗1(q∗1 − q∞) for all t ∈ [0, t∗1]. We assume
without loss of generality that q∞ < ∞. Indeed, in that case, the result holds since
f ′(q∗t )q

∗
t − f(q∗t )− c0 is positive for all t as soon as R0 is sufficiently large.

First, let us look at π(q∗0)(R0−R∗1). After integration by parts of (24), we obtain

δπ(q∗0)(R0 −R∗1) = (q∗1π(q∗0) ln(π(q∗1))− q∗0π(q∗0) ln(π(q∗0)) +
1

δ
π(q∗0)

ˆ q∗0

q∗1

u ln(π(u))du

For large R0, π(q∗0)→ 0 and q∗0 ↗ q∞, so q∗1π(q∗0) ln(π(q∗1))−q∗0π(q∗0) ln(π(q∗0)→ 0. For

R0 sufficiently large, we have π(q∗0)|
´ q∗0
q∗1
u ln(π(u))du| ≤ π(q∗0) ln(π(q∗0))

(q∗0−q∗1)2

2
→ 0.

We deduce that π(q∗0)(R0 −R∗1)→ 0 for R0 →∞.

Second look at
´ t∗1

0
e−δt(f ′(q∗t )q

∗
t − f(q∗t )− c0)dt. We have e−δt|f ′(q∗t )q∗t − f(q∗t )−

c0| ≤ e−δt(f ′(q∞)q∞ − f(q∞) + c0), which is integrable on R+. Using the dominated
convergence theorem, we have:

ˆ t∗1

0

e−δt(f ′(q∗t )q
∗
t − f(q∗t )− c0)dt −→ (f ′(q∞)q∞ − f(q∞)− c0)

ˆ ∞
0

e−δtdt

=
f ′(q∞)q∞ − f(q∞)− c0

δ
.

Therefore:

lim
R0→∞

JR0 [q
∗, s∗] =

(f ′(q∞)q∞ − f(q∞))− (f ′(q)q − f(q))

δ
,

which is positive iff q∞ ≥ q or equivalently, π(q) ≥ 0 (Assumption 3).

The intertemporal profit R0 7→ JR0 [q
∗, s∗] admits at most one maximum

for R0 ≥ R∗1. When R0 ≥ R∗1, JR0 [q
∗, s∗] =

´ t∗2
0
e−δt(f ′(q∗t )q

∗
t − f(q∗t ) − c0)dt +
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e−δt
∗
1π(q∗1)R0 and we can prove that we have:

δJR0 [q
∗, s∗] = δR∗1e

−δt∗1g(q∗1) + e−δt
∗
1π(q∗1)

ˆ q∗0

q∗1

u
−g′(u)

π(u)
du (55)

+ e−δt
∗
1
(q∗0f

′(q∗0)− f(q∗0))− (qf ′(q)− f(q))

π(q∗0)

= δR∗1
g(q∗1)

π(q∗1)
π(q∗0) + π(q∗0)

ˆ q∗0

q∗1

u
−g′(u)

π(u)
du−

ˆ q

q∗0

uf ′′(u)du

(56)

and after derivation:

δ
∂JR0 [q

∗, s∗]

∂R0

=
∂R0

∂q∗0

(
δR∗1

g(q∗1)

π(q∗1)
π′(q∗0) + π′(q∗0)

ˆ q∗0

q∗1

u
−g′(u)

π(u)
du− q∗0π′(q∗0)

)

= −π′(q∗0)
∂R0

∂q∗0

(
q∗0 −

ˆ q∗0

q∗1

u
−g′(u)

π(u)
du− δR∗1

g(q∗1)

π(q∗1)

)
. (57)

Since the derivation of (24) implies 1 =
q∗0

π(q∗0)
(−π′(q∗0))∂R0

∂q∗0
, we have:

δ
∂JR0 [q

∗, s∗]

∂R0

=
π(q∗0)

q∗0

(ˆ q∗0

q∗1

ug′(u) + π(u)

π(u)
du+ q∗1 − δR∗1

g(q∗1)

π(q∗1)

)
. (58)

We now distinguish two cases, depending on the sign of q∗1g
′(q∗1) + π(q∗1).

First case: q∗1g
′(q∗1) + π(q∗1) < 0. Since by assumption q 7→ qg(q) − f(q) is

concave and since q∗1g
′(q∗1)+π(q∗1) < 0, we have for any q∗1 ≤ q∗0 ≤ q, q∗0g(q∗0)−f(q∗0) ≥

qg(q)− f(q).
Moreover, from (56) and (57), any extremum ofR0 7→ JR0 [q

∗, s∗] denoted JRext [q
∗, s∗]

is such that (with q∗1 ≤ q∗0 ≤ q):

δJRext [q
∗, s∗] = q∗0π(q∗0)−

ˆ q

q∗0

uf ′′(u)du

= q∗0g(q∗0)− f(q∗0)− qf ′(q) + f(q)

≥ (q∗0g(q∗0)− f(q∗0))− (qg(q)− f(q)) ≥ 0,

which implies that the intertemporal profit JRext [q
∗, s∗] is positive for any extremum

Rext. Since it is already positive for R∗1 and for values of R0 → ∞, it implies that
JR0 [q

∗, s∗] ≥ 0 for any value of R0.
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Second case: q∗1g
′(q∗1) + π(q∗1) ≥ 0. We first prove that we have q∗1 ≥ δR∗1

g(q∗1)

π(q∗1)

in this case. Indeed:

δR∗1
g(q∗1)

π(q∗1)
=

ˆ q∗1

0

−ug′(u)

g(u)
du
g(q∗1)

π(q∗1)

≤ −q
∗
1g
′(q∗1)

g(q∗1)
q∗1
g(q∗1)

π(q∗1)
, (59)

since 0 ≤ −ug′(u) ≤ −q∗1g′(q∗1) (q 7→ qg′(q) is decreasing by assumption) and g(u) ≥
g(q∗1) > 0.

Moreover,
−q∗1g′(q∗1)

g(q∗1)
q∗1

g(q∗1)

π(q∗1)
≤ q∗1 is equivalent to q∗1g

′(q∗1) + π(q∗1) ≥ 0, which holds

in our case. Therefore, we have from (59) that:δR∗1
g(q∗1)

π(q∗1)
≤ q∗1.

Remark that if
∂JR0

[q∗,s∗]
∂R0

does not admit any zero, R0 7→ JR0 is increasing for any
R0 ≥ R∗1 and is thus positive, since JR∗1 ≥ 0.

Consider now the case that
∂JR0

[q∗,s∗]
∂R0

admits at least one zero. We consider the
smallest extremum and we denote the resource quantity Re and the associated initial

extraction flow qe. Since q∗1 − δR∗1 g(q
∗
1)

π(q∗1)
> 0, the first extremum cannot be a minimum

(i.e., a maximum or a saddle point). Assume that there exists another extremum

q̂e. From (58), we must have
´ q̂e
qe

ug′(u)+π(u)
π(u)

du = 0. Since u 7→ ug′(u) + π(u) is

decreasing, it implies that qeg
′(qe) + π(qe) ≥ 0 and q̂eg

′(q̂e) + π(q̂e) ≤ 0: therefore,
if there exists a second extremum, the first one is a saddle point and the second one
cannot be a minimum. As consequence, any extremum of R0 7→ JR0 [q

∗, s∗] cannot
be a minimum and R0 7→ JR0 admits at most one maximum and admits a minimum
value for R0 = R∗1 or R0 = ∞. Since these both values are positive, JR0 [q

∗, s∗] ≥ 0
for any R0 ≥ R∗1.

B.2 Convex marginal cost and Rb =∞
The following lemma summarizes our result.

Lemma 5 If the marginal cost function is convex and null in zero: f ′(0) = 0, then
Rb =∞.

Proof.
The proof strategy consists in proving that no deviation fulfills the resource con-

straint.
We consider as a deviation (q, s), whose extraction stops at date τ2. We aim at

proving that τ2 7→
´ τ2

0
qtdt is strictly increasing over R+. Since Q(t∗2) = R0, there is

no possible deviation and we must have q = q∗. We already know that τ2 7→
´ τ2

0
qtdt

is strictly increasing over [0, t∗1] (see equation (47) and the discussion below). We now
assume that τ2 ≥ t∗1.

From equations (48) and (50), we obtain that

Q(q1) =

ˆ t∗1

0

f ′−1(f ′(q∗t ) + eδ(t−t
∗
1)(f ′(q1)− f ′(q∗1))dt+

1

δ

ˆ q

q1

u
f ′′(u)

f ′(u)
du.
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We already know that proving that τ2 7→
´ τ2

0
qtdt is increasing for τ2 ≥ t∗1 is

equivalent to prove that Q is decreasing for q1 ≤ q∗1 (see (51)). After derivation, we
have:

Q′(q1) =

ˆ t∗1

0

eδ(t−t
∗
1)f ′′(q1)

f ′′(f ′−1(f ′(q∗t ) + eδ(t−t
∗
1)(f ′(q1)− f ′(q∗1)))

dt− 1

δ
q1
f ′′(q1)

f ′(q1)

=
1

δ
q1
f ′′(q1)

f ′(q1)
(
f ′(q1)

q1

ˆ t∗1

0

δeδ(t−t
∗
1)

f ′′(f ′−1(f ′(q∗t ) + eδ(t−t
∗
1)(f ′(q1)− f ′(q∗1)))

dt− 1)

(60)

We now consider Q1(q1) = f ′(q1)
q1

´ t∗1
0

δeδ(t−t
∗
1)

f ′′(f ′−1(f ′(q∗t )+eδ(t−t
∗
1)(f ′(q1)−f ′(q∗1)))

dt. Since t 7→
q∗t is decreasing on [0, t∗1], and f ′, f ′−1 and f ′′ are increasing, we have:

Q1(q1) ≤ f ′(q1)

q1

ˆ t∗1

0

δeδ(t−t
∗
1)

f ′′(f ′−1(f ′(q∗1) + eδ(t−t
∗
1)(f ′(q1)− f ′(q∗1)))

dt.

Making a change of variable u = f ′−1(f ′(q∗1) + eδ(t−t
∗
1)(f ′(q1)− f ′(q∗1)), we have du =

(f ′(q1)− f ′(q∗1)) δeδ(t−t
∗
1)

f ′′(f ′−1(f ′(q∗1)+eδ(t−t
∗
1)(f ′(q1)−f ′(q∗1)))

dt and

Q1(q1) ≤ f ′(q1)

q1(f ′(q1)− f ′(q∗1))

ˆ q1

f ′−1(f ′(q∗1)+e−δt
∗
1 (f ′(q1)−f ′(q∗1))

du

≤ f ′(q1)

(f ′(q1)− f ′(q∗1))

q1 − f ′−1(f ′(q∗1) + e−δt
∗
1(f ′(q1)− f ′(q∗1))

q1

≤ f ′(q1)

(f ′(q1)− f ′(q∗1))

q1 − q∗1
q1

= Q2(q∗1) (61)

We aim at proving that Q2(q∗1) ≤ 1 for any q1 ≤ q∗1. However, Q2(q∗1) ≤ 1 iff:

f ′(q∗1)− f ′(q1)

q∗1 − q1

≥ f ′(q1)− f ′(0)

q1 − 0
,

which always holds for any q1 ≤ q∗1 (remind that f ′(0) = 0), since f ′ is convex.
This implies from (60)–(61) that Q′(q1) ≤ 0 for any q1 ≤ q∗1, and therefore that

τ2 7→
´ τ2

0
qtdt is increasing on [t∗1,∞[.
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