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Abstract

Each of two experts may provide service for a client. In one state, one expert has a lower
service cost than the other expert; in another state, the opposite is true. Each expert may also
exert e¤ort to acquire information about a client�s service cost. E¤ort and acquired signal are private
information. In a market, an expert may refer the client to the other for a fee. In equilibrium,
only one expert exerts e¤ort and refers successfully, yet e¤ort and referral are ine¢ cient. If experts
form an organization, they can transfer costs among themselves. Within such an organization, an
expert who refers bears the service cost incurred by the referred expert. Referral e¢ ciency can be
restored at the expense of cost-reduction incentives. An organization has a lower expected cost if
and only if referral e¢ ciency is more important than cost incentives.
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1 Introduction

We study an economic system consisting of experts who provide services to clients. An expert

may invest in e¤ort to �nd out a client�s state-contingent service costs, as well as to reduce overall

costs. We consider e¢ ciencies in a referral market and within an expert organization that can

assign cost responsibilities. For each institution, we study an expert�s information-acquisition and

cost-reduction incentives, and experts�incentives to refer clients to each other.

Information acquisition and task assignment are topical in policy forums. In the U.S. healthcare

reform, cost-control measures are being phased in after the A¤ordable Care Act took e¤ect in

2014. The Center for Medicare and Medicaid Services, the federal agency that administers the

insurance programs for the elderly and the indigent, has been encouraging providers (such as

general practitioners, specialists, and hospitals) to form so-called Accountable Care Organizations

(ACOs).1 Such organizations are supposed to reduce cost through better care coordination achieved

by referrals among physicians (see Song, Sequist, and Barnett (2014)). Other professionals, such as

accountants and lawyers, refer clients to each other, whether they operate in the market or within

an organization. How do experts�performances compare in the market and within an organization?

We provide a framework for these comparisons.

In our model, each of a set of clients would like to obtain service from one of two experts. A

client�s case can be easy or complicated. An easy case is always less expensive to service than a

complicated one. However, the two experts have di¤erent cost comparative advantages: Expert 1

has a lower service cost than Expert 2 if the case is easy; conversely, Expert 2 incurs a lower cost

than Expert 1 if the case is complicated. The complexity of a client�s case is unknown. An expert

may exert some e¤ort to obtain information about the case. The e¤ort generates an informative

signal, and, as a convention, a higher signal indicates a higher likelihood of a complicated case, so a

higher (expected) cost. The service from an expert gives a �xed bene�t to a client, and each client

1For a description of ACOs, see: https://www.cms.gov/medicare/medicare-fee-for-service-
payment/sharedsavingsprogram/downloads/aco-narrativemeasures-specs.pdf
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pays a �xed tari¤ for the service.2

We �rst study how experts operate in a referral market. After, say, Expert 1 has exerted an

e¤ort and observed a signal, he may make a referral o¤er to Expert 2: the client and the service

tari¤ are transferred from Expert 1 to Expert 2 if Expert 2 pays a referral price. The problems

facing these experts are: i) e¤ort is hidden action, unknown to anyone except the expert who exerts

it, and ii) the signal generated by e¤ort is hidden information, unknown to anyone except the expert

who has exerted the e¤ort.

Despite asymmetric-information problems, there is an equilibrium in which Expert 1 exerts

e¤ort, and successfully refers clients to Expert 2 if and only if their signal is above a threshold (a

higher signal indicating a higher expected cost). An expert�s incentive is to avoid complicated and

costly clients, so in equilibrium Expert 2 only gets lemons from Expert 1. However, Expert 2 has

a cost advantage in complicated cases. Expert 1 credibly exploits this cost advantage when setting

the referral price, so the referred lemons will be accepted.

Expert 2�s acceptance decision is based on comparing the referral price with the average cost

given that signals are above the threshold. For e¢ ciency, Expert 2 should have compared the referral

price with the actual expected cost, but this is Expert 1�s private information. This discrepancy is

common in adverse-selection models. As a result, Expert 1�s referral and information-acquisition

decisions do not internalize all cost savings due to cost comparative advantage, and are never �rst

best.

Expert 2�s equilibrium strategy, however, is completely di¤erent. He will neither exert e¤ort nor

make any referral. The cost comparative advantage for Expert 1 is for the client with an easy case,

but there is no equilibrium in which Expert 2 refers a client to Expert 1. A simple case is more

pro�table than a complicated case. If in equilibrium Expert 2 was successful at referring a client

at a signal, he would also refer the client if the signal had become higher (indicating a higher cost).

2A stylized example is this. A consumer needs to �le a tax return. Simple returns are less time-consuming
than complex returns. However, a tax preparer is more cost e¤ective than an accountant for a simple return,
and vice versa.
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In other words, Expert 2 would always refer lemons, never peaches. Expert 2�s referral, therefore,

would not let Expert 1 exploit his cost comparative advantage. Without any success in referral in

equilibrium, Expert 2 does not exert e¤ort.

We then study expert organizations. The referral market equilibrium is ine¢ cient because an

expert is unconcerned about the cost consequence to be borne by the expert who accepts the referral.

Our premise is that an organization di¤ers from the market because it can make cost information

available ex post. In an organization, when an expert refers a client, the referring expert can

be held responsible for the cost incurred by the referred expert. We call this the cost-transfer

protocol. An expert now can fully internalize bene�ts of cost comparative advantage. If Expert 1�s

signal indicates that Expert 2 has a lower expected cost, he simply refers the client to Expert 2

and, under the cost-transfer protocol, reaps the cost savings. (Song, Sequist, and Barnett (2014)

identify an ACO exactly as an organization in which �physicians...share the consequences of each

other�s referral decisions�.)

We also examine a drawback of the cost-transfer protocol. We enrich our model by allowing

each expert to choose a cost-reduction e¤ort when serving a client. This adds another hidden

action. When experts operate in the market, each is responsible for his cost, so cost e¤ort must be

e¢ cient. Cost reduction is orthogonal to information acquisition and referral in the market. This

is no longer true for an organization that uses the cost-transfer protocol.

Our point is that the cost-transfer protocol introduces a new tradeo¤. When experts can reduce

their costs, the magnitude of cost saving determines whether a market performs better than an

organization. If cost saving by e¤ort is small, cost comparative advantage dominates cost e¤ort,

so an expert organization performs better than the market. If cost saving by e¤ort is large, the

opposite is true. Ours is also a theory about whether referrals should be among experts within a

�rm under the cost-transfer protocol, or among independent experts in the market.

We consider various extensions of the basic model. First, we discuss constraints on experts�

capacities, and variable returns. We qualify how various results should be properly interpreted.
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Second, we endogenize clients� tari¤s by a Bertrand game. Finally, we let cost comparative ad-

vantage potentially be big so that a client may be a lemon to one expert, but a peach to another.

There, we show that referrals by both experts may arise in equilibrium.

Our paper is related to the literatures on credence goods, referrals, and organizations. In

contrast to models of credence goods (see the Dulleck and Kerschbamer (2006) survey), we simplify

experts� price and treatment decisions. Here, an expert sets one price and has no control over

costs. Furthermore, many models of credence goods are on interactions between experts and clients.

Instead, we study the interactions between experts via referral and information acquisition.

Garicano and Santos (2004) study referrals between two experts who have di¤erent produc-

tivities and costs in generating revenue from a project by exerting e¤orts. An expert can choose

between implementing a project himself, or referring it to the other expert. Referral of a project is

subject to asymmetric information because a project�s potential can be either high or low, which

is privately known by an expert. Equilibrium referrals via �xed price or revenue-sharing contracts

are often ine¢ cient. In our model, private information is in the form of a continuous signal, rather

than a binary signal. The kinds of ine¢ ciency in our model are also di¤erent. First, experts�e¤orts

to acquire information are ine¢ cient. Second, an expert�s equilibrium referrals do not internalize

social cost savings. Third, when experts form an organization, we allow the transfer of costs, which

leads to shirking.

Referrals incentives have been studied in models of consumers searching for experts� advice;

see Arbatskaya and Konishi (2012), Bolton, Freixas, and Shapiro (2007), Inderst and Ottaviani

(2009), and Park (2005). Experts face a tradeo¤ between honestly advising clients to build a good

reputation, and reaping a quick pro�t at the client�s expense. We do not model search or reputation

here, but we show that even without threats from consumers, referrals may occur.

Referrals are studied in the health literature. In the health sector, insurers set up incentive

mechanisms for referrals between providers, say, between general practitioners and specialists (see

Shumsky and Pinker (2003) and Mariñoso and Jelovac (2003)). We do not follow a contract-design
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approach but our result suggests that physician organizations may lead to e¢ cienct referrals. Also,

market referrals with �nancial transfers are uncommon in the medical sector. However, our analysis

of how an organization provides incentive to refer clients is relevant to the organizational approach

currently advocated in the health domain. We will revisit this after we have presented results.

We contribute to organizational economics. Our hypothesis that costs become transferable when

experts merge is similar to the reallocation of ownership rights within a �rm. Schmidt (1996) argues

that the allocation of ownership rights has an important impact on the allocation of information

about the �rm. Garicano (2000), Garicano and Santos (2004) and Fuchs and Garicano (2010)

argue that organizations can better match clients to experts, and this is supported by evidence of

obstetric practices in Epstein, Ketcham, and Nicholson (2010). We have argued that when cost

comparative advantage is internalized, matches will be e¢ cient, so we explain why better matches

happen.

However, we point out the degradation of work incentives when costs are transferred in an

organization. This possibility has also been raised by Frandsen and Rebitzer (2015), who show

that free-riding problems in ACOs may erode savings from better care coordination. Cebul et

al. (2008) and Rebitzer and Votruba (2011) provide evidence on the adverse e¤ects of coordination

failures in the health care delivery system in the U.S. The free-riding and work-incentive de�ciency

should be weighed against better referrals, which, according to Able (2013), is the mechanism by

which ACOs reduce aggregate medical expenditures and improve Medicare patient health.

The paper is organized as follows. In Section 2, we set up the model and derive the �rst best.

Section 3 studies a market in which experts can refer clients to each other at a price. In Section

4, we present organizations and compare them to the market and the �rst best. We also provide

speci�c perspectives on the relevance of our theory to legal and medical professionals. In Section

5 we consider a number of robustness issues. Section 6 concludes. An Appendix contains proofs of

results.
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2 The model

2.1 Clients and experts

Each of a set of clients needs the service from one of two experts. These clients may be consumers

who seek services from professionals such as lawyers, doctors, or engineers. Alternatively, a company

may have projects that require inputs from outside contractors, and these projects correspond to

the clients while the contractors are the experts. We let there be a continuum of clients, with the

total mass normalized at 1. Each client is characterized by a state or a type. Each client�s state or

type is independently and identically distributed on the binary support f!1; !2g with a probability

1=2 on each state. We discuss the equal prior assumption in Section 5.

There are two experts, namely Expert 1 and Expert 2. Each expert can provide a service to

any number of clients. This amounts to an assumption that experts have enough capacities. We

further assume that the cost of service (including e¤ort disutility, see below) is linear in the number

of clients served. We do not aim to construct a theory on organizations and incentives based on

returns to scale or �xed costs, so nonbinding capacity and constant returns are natural assumptions.

We assume that each expert gives the same bene�t to a client.

Experts di¤er by their service costs that are dependent on a client�s states. The following table

de�nes each expert�s cost contingent on a client�s type:

state !1 state !2
Expert 1�s cost cL cH
Expert 2�s cost cL +� cH ��

where 0 < cL < cL+� < cH�� < cH (so 2� < cH�cL). If a client�s state is !1, Expert 1�s service

cost, cL, is lower than Expert 2�s, cL + � , but if a client�s state is !2, Expert 2�s service cost is

lower. (In Section 5 we consider an alternative cost con�guration: 0 < cL < cH�� < cL+� < cH .)

The cost saving � is assumed to be symmetric between the experts for convenience. Ex ante

each expert has the same expected cost of providing services to clients. State !1 can be thought of

as a �good�or "easy" state: the service cost is lower, either cL for Expert 1 or cL +� for Expert

2. State !2 corresponds to a �bad�or "complicated" state with service cost either cH �� or cH .
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Expert 1 has a cost advantage � in state !1, while Expert 2 has an advantage in state !2.

The setup for experts�costs will be enriched in Section 4. Each expert�s cost will be stochastic,

and each expert can take an e¤ort to reduce the expected value of his cost distribution (so the costs

de�ned above would be expected values). We will then use the more general setup to compare

markets and organizations. Until then, we use the simpler setup above. Our de�nition of the �rst

best, and our results in Section 3 are una¤ected by the omission of cost-reduction e¤orts.

We subscribe to the credence-good framework. Clients do not get to observe their states when

they seek services from experts. Neither do clients get to observe how much cost an expert eventually

incurs to provide the service. The only contractible event for clients is that the service is provided.

To a client, for a given tari¤ for service provided, the experts are identical because each of them

provides the same bene�t.

2.2 Information acquisition

Experts do not observe clients�cost types. Each expert can acquire information about a client�s cost

type by exerting a costly e¤ort. We assume that each expert has the same information-acquisition

technology and e¤ort disutility. The information comes in the form of a signal de�ned on a positive

support, s 2 [s; s]. Let e 2 R+ denote an expert�s e¤ort, and �(e) denote the disutility of e¤ort.

The disutility � may have �xed and variable components. To acquire information, an expert has

to set up an experiment, and exercise care during the investigation. These two steps correspond to

the �xed and variable components. We assume that the �xed disutility is not so high as to make

information acquisition worthless. On the other hand, we will assume that it is not so low that an

expert will acquire information many times. That is, �(0) > 0, but �(0) is not too big. We assume

that for any strictly positive e¤ort, � is increasing and convex. We also let lime!0+ = �0(e) = 0,

so that the disutility due to the variable component can be arbitrarily low.

Let fi(sje) be the density of the signal s conditional on e¤ort e and state !i, i = 1; 2. We

assume that both f1 and f2 are always strictly positive, and continuous. By Bayes rule, conditional
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on a signal s, the posterior probability of the state being !i is

Pr(!ijs; e) =
fi(sje)

f1(sje) + f2(sje)
; i = 1; 2: (1)

We assume that for any e¤ort, the signal satis�es Monotone Likelihood Ratio Property (MLRP):

f2(s
0je)

f2(sje)
� f1(s

0je)
f1(sje)

for s0 > s, each e:

As a normalization, we let the signals be completely uninformative at the lowest e¤ort, e = 0,

so that f1(sj0) = f2(sj0), each s 2 [s; s], and that for e > 0, the inequality in the MLRP de�nition

holds as a strict inequality for each s. Under MLRP
f2(sje)
f1(sje)

is increasing in s, so a higher value of

the signal indicates a higher likelihood that the state is !2:

Pr(!2js; e) =
1

1 +
f1(sje)
f2(sje)

is increasing in s.

For future use, we note that the ex ante density of signal s, given e¤ort e, is Pr(!1)f1(sje) +

Pr(!2)f2(sje) = 0:5[f1(sje) + f2(sje)].

A higher e¤ort makes signals more informative. We use the following assumption on how the

densities f1 and f2 relate to e¤orts, and call it the Informativeness Property :

For e0 > e, f2(sje0) �rst-order stochastically dominates f2(sje), and f1(sje) �rst-order

stochastically dominates f1(sje0).

A higher e¤ort reduces the conditional cumulative density
Z s

s
f2(xje)dx and raises the con-

ditional cumulative density
Z s

s
f1(xje)dx. First-order stochastic dominance is often used in the

literature to de�ne how e¤ort a¤ects information. A higher e¤ort makes a lower signal more in-

dicative of state !1, while it makes a higher signal more indicative of state !2. We further assume

that both conditional densities are di¤erentiable in e.

2.3 First best

An allocation is an e¤ort to be taken by an expert, and a decision rule that assigns a client to an

expert according to the generated signal. The �rst best is an allocation that minimizes experts�
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expected service cost and e¤ort disutilities. (In Subsection 4.1, we will extend the de�nition of

an allocation and the �rst best to include a cost-reduction e¤ort.) In principle, an allocation can

prescribe multiple e¤orts to generate multiple (informative) signals and an assignment rule based

on all signals. Our assumption at the beginning of Subsection 2.2 rules this out, so e¤ort is to be

exerted only once in the �rst best.

Let an expert take e¤ort e. Contingent on signal s, the expected cost of servicing this client by

Experts 1 and 2 are, respectively,

Pr(!1js; e)cL + Pr(!2js; e)cH (2)

Pr(!1js; e) (cL +�) + Pr(!2js; e) (cH ��) : (3)

The conditional probabilities are given by (1), so Expert 2 has a cost lower than Expert 1 if and

only if f1(sje) � f2(sje). For each e¤ort e, de�ne bsfb(e) by f1(bsfbje) = f2(bsfbje). By MLRP, s � bsfb
if and only if f1(sje) � f2(sje). In this notation, the cost-minimizing allocation assigns a client to

Expert 2 if and only if the client�s signal s is larger than bsfb(e).
Given the cost-minimizing allocation, the total expected service cost and e¤ort disutility per

client is

0:5

Z bsfb(e)
s

fPr(!1jx; e)cL + Pr(!2jx; e)cHg[f1(xje) + f2(xje)]dx+

0:5

Z s

bsfb(e)fPr(!1jx; e)(cL +�) + Pr(!2jx; e)(cH ��)g[f1(xje) + f2(xje)]dx+ �(e): (4)

We assume that (4) is quasi-convex.3 The �rst-best e¤ort, efb, is one that minimizes (4). The

3Consider �0:5�
Z s

bs ff2(xje)� f1(xje)gdx + �(e), which is the expected cost at threshold bs (after some
constants have been dropped). The Hessian of this expected cost is:26664

�0:5�
Z s

bs
n
@2f2(xje)
@e2 � @2f1(xje)

@e2

o
dx+ �00(e) 0:5�

n
@f2(bsje)
@e � @f1(bsje)

@e

o
0:5�

n
@f2(bsje)
@e � @f1(bsje)

@e

o
0:5�

n
@f2(bsje)
@s � @f1(bsje)

@s

o
37775 :

Convexity requires that the Hessian is positive de�nite.
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�rst-order condition is:

0:5�

Z s

bsfb(efb)
(
@f2(xjefb)

@e
� @f1(xjefb )

@e

)
dx = �0(e

fb
): (5)

The �rst best characterization has the following interpretations. First, the base costs, cL and

cH , set up reference points only, so their values do not appear in the �rst-order condition (5).

Second, cost saving, from cH to cH � � may be achieved, and cost increase from cL to cL + �

may be avoided. The assignment of a client to Expert 2 whenever s is above a threshold is for cost

e¤ectiveness. Third, a higher e¤ort yields more precise signals, but leads to more disutility. The

left-hand side of (5) re�ects the bene�t. Because both f1 and f2 are densities, the integral in (5)

would have been zero if the lower limit was set to s. Now by the Informativeness Property, this

integral, with lower limit at bsfb(efb) > s must be strictly positive, and it measures how strongly

higher values of s leads to cost-e¤ective assignments of clients. The right-hand side of (5) is the

marginal disutility of e¤ort.

We assume that clients are matched randomly to experts, and pay a �xed tari¤, T , to the expert

who renders a service. Each client obtains the same bene�t from an expert and each expert�s ex

ante cost for treating a random client is equal to the average cost. The only restriction here is that

T is at least the ex ante average cost, (cL+ cH)=2. In Subsection 5.1, we endogenize the tari¤ (and

also the initial assignment of clients) by letting experts compete in a Bertrand fashion. Our results

are unchanged with endogenously chosen tari¤s.4

3 Referral market

We look for perfect-Bayesian equilibria of the following extensive form:

Stage 0: For each client, his cost type, either !1 or !2, is drawn independently with equal proba-

bilities. The draw is never observed by a client or an expert. Half of all clients are matched

4Any given value of the tari¤ and initial assignment de�ne a valid subgame of the extensive form to be
presented, so our analysis for arbitrary tari¤ and assignment is necessary even when tari¤s are determined
endogenously.
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with Expert 1, and the other half with Expert 2.

Stage 1: An expert decides on an e¤ort for a matched client. Then the expert observes a realization

of the signal for each exerted e¤ort. The e¤ort and signal are the expert�s private information.

Stage 2: For each client an expert chooses between keeping the client and referring the client to

the other expert at a price that he chooses.

Stage 3: If an expert has received a referral at some price, the expert decides whether to accept

the referral or reject it. If the expert accepts the referral, he pays the other expert the referral

price, provides service to the client, incurs the cost (as the client�s state eventually realizes),

and receives the tari¤. If he rejects the referral, the referring expert will render service and

receive the tari¤.

In Stage 3, an expert may not acquire information before deciding between accepting and

rejecting a referral. This may be due to an expert having no access to the client until he has

accepted the referral. Alternatively, information acquisition may be time consuming, and delays

may be unacceptable to clients. Finally, a model with multiple rounds of information acquisition

together with o¤ers and countero¤ers, is less tractable, and outside the scope here.

An expert�s payo¤ comes from one of three events. First, if an expert has kept his own client, he

gets the tari¤, and incurs the service cost and e¤ort disutility. Second, if an expert has accepted a

referral, he pays the referral price, keeps the tari¤, and incurs the service cost. Third, if an expert�s

referral has been accepted, he gets the referral price and incurs the e¤ort disutility. Each expert

has a reservation utility that is set at 0. The referral price made by an expert can be positive or

negative.

An expert�s strategy is de�ned by i) an e¤ort in Stage 1, ii) a referral decision and price in

Stage 2 as a function of the expert�s own signal, and iii) a referral-acceptance decision in Stage 3 as

a function of the referral price. A perfect-Bayesian equilibrium consists of a pair of strategies that

are mutual best responses, and beliefs about (unobserved) e¤ort and signals, which are updated
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according to strategies and Bayes rule whenever possible.

There are many unreached information sets. For example, in an equilibrium, Expert 1 may

take some e¤ort e1, make a referral o¤er at price p1 if and only if signal s is above a certain

threshold. What would Expert 2 believe about Expert 1�s e¤ort and signal if Expert 1�s referral

price were p01 6= p1? Also, in an equilibrium, an expert may not make any referral at all, so all

referral prices are o¤-equilibrium. Perfect-Bayesian equilibria do not impose belief restrictions at

out-of-equilibrium information sets. Multiple equilibria can be supported by many o¤-path beliefs

(and will be discussed later). We will impose a natural and simple belief restriction to be de�ned

in Subsection 3.2.

In the following subsections, we construct an equilibrium with the following outcome: Expert

1 exerts a strictly positive e¤ort, but Expert 2 does not. Expert 1 refers at a price for all signals

above a threshold. Expert 2 does not refer. We will begin the construction by presenting necessary

conditions, then prove existence by a standard �xed-point argument.

3.1 Experts�equilibrium referral and acceptance strategies

Consider any equilibrium in which Expert 1 has taken an e¤ort, say e1 > 0, and has observed a

signal s in Stage 1. In a continuation equilibrium in Stage 2, if Expert 1 makes a referral that will

be accepted, it will always be at a unique price. Indeed, If Expert 2 would accept at referral prices

p01 and p1, with p1 < p01, then Expert 1 would never make a referral at the lower price p1. Hence,

in equilibrium, Expert 2 must reject all o¤ers above a threshold, p1.

Suppose that Expert 2 accepts a referral at price p1. How should Expert 1 choose between

keeping and referring the client? Given that Expert 1 has taken e¤ort e1 and observed signal s,

the expected payo¤ (net from e¤ort disutility) from keeping the client is

T � Pr(!1js; e1)cL � Pr(!2js; e1)cH : (6)

Because this is decreasing in s by MLRP, we conclude that Expert 1 will refer the client with signal
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s whenever s > bs where
T � Pr(!1jbs; e1)cL � Pr(!2jbs; e1)cH = p1: (7)

Clearly, we can repeat the same steps for Expert 2�s referral decision given that Expert 1 accepts

a referral if the price is below a threshold. We summarize the result in the following lemma, whose

proof is already in the text above.

Lemma 1 In an equilibrium, in Stage 3 an expert�s referral is accepted if and only if the referral

price is at or below a threshold, and in Stage 2, an expert makes a referral if and only if the signal

exceeds a threshold.

Lemma 1 asserts that, in any equilibrium in which e¤ort is positive, referral decisions and ac-

ceptance decisions must be threshold policies. Transmission of the private signal from information-

acquisition e¤ort must be pooling. Furthermore, an expert will refer lemons and keep peaches.

3.2 Expert 1�s equilibrium referral and e¤ort

We now focus on Expert 1�s referral under the assumption that he has taken an e¤ort. First, we

introduce a belief restriction:

De�nition 1 (Passive Belief) A perfect-Bayesian equilibrium is said to satisfy passive belief if

an expert�s belief about the hidden e¤ort and signal on any o¤-equilibrium referral price remains

the same as the belief at the equilibrium price.

Passive belief was �rst introduced by McAfee and Schwartz (1994) in the context of multilateral

contracts.5 Here, it says that deviations are uncorrelated trembles. Suppose that, in an equilibrium,

Expert 1 takes e¤ort e1, and makes a referral o¤er at price p1 if and only if s is above a certain

5�Passive belief�is a common assumption in models of foreclosure, delegation, and integrations; see De-
quiedt and Martimort (2015), de Fontenay and Gans (2005), Hart and Tirole (1990), La¤ont and Martimort
(2000), O�Brien and Sha¤er (1992), Reisinger and Tarantino (2015), and Rey and Tirole (2007). More re-
cently, it has also been used in the consumer-search literature; see Bar-Isaac, Caruana and Cunat (2012),
Buehler and Schuett (2014), and Inderst and Ottaviani (2012).
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threshold. If Expert 2 receives a referral price p01 6= p1, passive belief speci�es that Expert 2

continues to believe that Expert 1 has taken e¤ort e1 and has made a referral because the signal

is above s. The restriction requires Expert 2 to believe that his expected cost remains at the same

equilibrium level even when Expert 1 o¤ers an o¤-equilibrium referral price.

Lemma 2 Under passive belief, in an equilibrium in which Expert 1 takes e¤ort e1 and refers

whenever s > bs, Expert 1�s equilibrium referral price p1 must be :

p1 = T � Pr(!1js > bs; e1)(cL +�)� Pr(!2js > bs; e1)(cH ��); (8)

so Expert 2�s equilibrium expected utility must equal the outside option.

The proof of Lemma 2 is this. When Expert 2 receives a referral, according to passive belief, he

must believe that Expert 1�s signal is above bs. Expert 2�s expected cost of providing service to the
referred client is Pr(!1js > bs; e1)(cL+�)+Pr(!2js > bs; e1)(cH��). Therefore, Expert 2 accepts the
referral if and only if the price is lower than T �Pr(!1js > bs; e1)(cL+�)�Pr(!2js > bs; e1)(cH��).
Given this best response by Expert 2, Expert 1 optimally chooses the highest price that will be

accepted. This is the de�nition of p1 in (8). Clearly, Expert 2 earns a zero expected utility when

he accepts a referral. (The equilibrium referral price may be negative; Expert 1 may have to pay

Expert 2 in order to cover the expected cost because the tari¤ is low. For example, if T is just

equal to the average of cL and cH , then T cannot cover Expert 2�s expected cost, but Expert 1 will

set p1 to be negative to cover that loss. Expert 1 will do this because his loss without a referral

would be even higher.)

Passive belief does rule out many other equilibria. In these equilibria, Expert 2 earns strictly

more than the outside option, but referral happens less often. To see this, choose " > 0, and for

the same e¤ort e1 and some signal threshold bs0 consider a referral price p01 satisfying
p01 + " = T � Pr(!1js > bs0; e1)(cL +�)� Pr(!2js > bs0; e1)(cH ��).

Now Expert 2�s strategy is to accept a referral at price p0 or lower. Expert 2 believes that the

signal is at least bs0. If Expert 1 o¤ers p1 > p01, Expert 2 would change his belief; he now believes
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that the signal threshold has increased from bs0 (perhaps all the way to s). Now that the bad state
is thought to be more likely, Expert 2�s expected cost has increased, so he rejects p1. Expert 1 is

then stuck with having to refer at a price that leaves some rent. Passive belief rules out such a

discontinuous change: when a referral is made at a higher price, Expert 2 must continue to believe

that the referral threshold is bs0. (See also the discussion following Proposition 1.) From now on,

we will always use passive belief.

We continue to characterize Expert 1�s referral threshold bs. Recall that Expert 1�s payo¤ from
keeping a client with signal s is (6). Given that Expert 2 accepts a referral at price p1, Expert

1 refers a client with signal s > bs if and only if p1 = T � Pr(!1jbs; e1)cL � Pr(!2jbs; e1)cH . As an
intermediate step, we present a basic property about experts�expected costs conditional on signals.

(The proof is in the Appendix.)

Lemma 3 For e1 > 0, the equation

Pr(!1jbs; e1)cL + Pr(!2jbs; e1)cH � cLf1(bsje1) + cHf2(bsje1)
f1(bsje1) + f2(bsje1) (9)

=

(cL +�)

Z s

bs f1(xje1)dx+ (cH ��)
Z s

bs f2(xje1)dxZ s

bs f1(xje1)dx+
Z s

bs f2(xje1)dx
(10)

� Pr(!1js > bs; e1)(cL +�) + Pr(!2js > bs; e1)(cH ��)
has a unique solution s � bs � s.

Suppose that Expert 1 has chosen e¤ort e1. If he observes signal s, his expected cost of providing

service is (9), whereas if Expert 2 gets all the clients with signals above s, Expert 2�s expected cost

is (10). Lemma 3 says that there must be a signal bs for which these two expected costs are equal.6
This result stems from Expert 2�s comparative advantage in providing services to clients at state

6If e¤ort has not been exerted, then f1 = f2, and the signal is uninformative. The only solution for the
equation is s. For any strictly positive e¤ort e1, the solution is strictly interior.
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Figure 1: Expected costs and Expert 1�s referral threshold bs
!2; Expert 2�s cost is � less than Expert 1�s. Figure 1 graphs three expected costs. The solid line

is Expert 1�s expected cost at signal s (9). The dotted line is Expert 1�s expected cost given that

signals are above s:

Pr(!1js > bs; e1)cL + Pr(!2js > bs; e1)cH � cL

Z s

bs f1(xje1)dx+ cH
Z s

bs f2(xje1)dxZ s

bs f1(xje1)dx+
Z s

bs f2(xje1)dx
. (11)

This dotted line is always above Expert 1�s expected cost at signal s. By MLRP, a higher s means

that state !2 is more likely. The expected cost conditional on all signals above s must indicate a

higher expected cost than at signal s. This expected cost, conditional on signals above s, of course

converges to (9) at s = s.

Now Expert 2�s comparative advantage makes his expected cost, expression (10) and the dashed

line in Figure 1, less than (11) at high values of s. (Expression (11) is identical to expression (10) at

� = 0.) But this comparative advantage diminishes as the conditional threshold s drops towards s.

If Expert 2 cannot exclude any possible signal Expert 1 has observed, his expected cost is simply
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(cL + cH)=2. The solution bs is the intersection of the solid and dashed lines.
The signi�cance of Lemma 3 is this. Although Expert 1�s referrals pool all clients with signals

higher than bs, the experts nevertheless can mutually bene�t from trade due to Expert 2�s cost

comparative advantage at state !2. Expert 1�s referrals are all lemons, but Expert 2�s has lower

expected cost servicing lemons. Given e¤ort e1, as long as the signal is above bs, the one in Lemma
3, a successful referral happens in equilibrium, as the next result shows (proof in the Appendix).

Proposition 1 In an equilibrium in which Expert 1 exerts strictly positive e¤ort e1, he refers a

client with a signal s � bs to Expert 2 at a price p1, and Expert 2 accepts a referral if and only if
Expert 1�s price is at most p1, where

T �
(cL +�)

Z s

bs f1(xje1)dx+ (cH ��)
Z s

bs f2(xje1)dxZ s

bs f1(xje1)dx+
Z s

bs f2(xje1)dx
= p1 = T � cLf1(bsje1) + cHf2(bsje1)

f1(bsje1) + f2(bsje1) : (12)

In (12), the �rst equation says that Expert 2 is indi¤erent between accepting all referrals of

clients with signals above bs and rejecting. The second equation says that Expert 1 is indi¤erent
between keeping client with signal bs and referring. Together they determine the continuation

referral equilibrium given e¤ort e1. These are mutual best responses. Proposition 1 stems from

classical adverse selection. Expert 1�s referral is based on his private information, so client bs is his
marginal client. Expert 2 faces the average client with signals above bs. Adverse selection does not
rule out trade because of cost comparative advantage.

Again, passive belief does rule out other continuation equilibria. For the same e¤ort e1, other

equilibria with referral price p01 and referral threshold bs0 are possible. Let
T �

(cL +�)

Z s

bs0 f1(xje1)dx+ (cH ��)
Z s

bs0 f2(xje1)dxZ s

bs0 f1(xje1)dx+
Z s

bs0 f2(xje1)dx
� " = p01 = T � cLf1(bs0je1) + cHf2(bs0je1)

f1(bs0je1) + f2(bs0je1) :

Here, Expert 1�s referral price is p01, and Expert 2�s equilibrium payo¤ is at " > 0. If Expert 1

raised the price from p01 to extract more rent, Expert 2 now would believe that the client had a very

high signal, say s, and would reject the higher price. This continuation equilibrium is consistent
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with Lemma 1, but violates passive belief. Under passive belief, any price between p01 and p
0
1 + "

must be accepted by Expert 2. For e¤ort e1, the continuation equilibrium in Proposition 1 has the

most referrals.

We next study Expert 1�s e¤ort incentive. If e1 is an equilibrium e¤ort, given that Expert 2

will accept a referral at price p1, Expert 1�s referral threshold is in (7). Recalling that the ex ante

density of s is 0:5[f1(sje1) + f2(sje1)], we write Expert 1�s expected payo¤ per client asZ bs
s
0:5[(T � cL) Pr(!1jx; e1) + (T � cH) Pr(!2jx; e1)][f1(xje1) + f2(xje1)]dx+

p1

Z s

bs 0:5[f1(xje1) + f2(xje1)]dx� �(e1):
From the de�nition of bs in (7), the �rst integral above is Expert 1�s expected utility when he keeps
the client (s below bs), while the second is the expected utility when he successfully refers (s above
bs). Using the expressions for the conditional probabilities of the states !1 and !2, we simplify the
payo¤ per client to�

T � cL + cH
2

�
� �(e1) + 0:5

Z s

bs f[p1 � (T � cL)]f1(xje1) + [p1 � (T � cH)]f2(xje1)]g dx: (13)

The �rst term in (13) is the expected payo¤ from treating a randomly chosen client; e¤ort has a

cost, the second term, but generates an expected bene�t, the di¤erence between the referral price

p1 and what Expert 1 would have obtained if he had kept the client (the integral).

In an equilibrium in which Expert 1�s e¤ort is positive, his equilibrium e¤ort e�1 and the referral

threshold bsmaximize (13) subject to the de�nition of bs in (7). The �rst-order condition characterizes
Expert 1�s equilibrium e¤ort:7

0:5

Z s

bs
�
[p1 � (T � cL)]

@f1(xje1)
@e1

+ [p1 � (T � cH)]
@f2(xje1)
@e1

�
dx = �0(e1): (14)

A higher e¤ort raises the density f2 more than the density f1 at high signals s by the Informativeness

Property, so
R sbs @f1(xje1)@e1

dx <
R sbs @f2(xje1)@e1

dx. Also because cH > cL, for any p1 between T � cH

and T � cL, the term inside the curly brackets in (14) must be strictly positive.

7In fact, the constraint (7) is redundant because the unconstrained maximization of (13) with respect to
e1 and bs yields that constraint anyway.
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3.3 Expert 2�s equilibrium e¤ort

We now turn to Expert 2�s equilibrium e¤ort and referrals. Indeed, one might have thought that

some �symmetry�might apply so Expert 2 could exploit cost comparative advantage. The answer

is negative, as stated in the next Proposition (proof in the Appendix).

Proposition 2 In any equilibrium Expert 2 does not exert any e¤ort or make any referral.

Expert 1 has cost comparative advantage in the good state !1, so if there was any referral to

exploit that advantage, Expert 2 would have to refer clients with low signals. Lemma 1, however,

says that an expert would like to keep only clients with low signals; an expert will never refer

peaches, only lemons. If Expert 1 believed that Expert 2 was referring clients with low signals,

Expert 2 would cheat and refer clients with high signals. However, for clients with signals above a

threshold Expert 1�s expected costs will never be lower than Expert 2�s. There is no possibility of

mutually bene�cial trade. Given that in equilibrium Expert 2 does not refer, there is no incentive

for him to acquire information.

Because Expert 2 does not make any equilibrium referral, all referral price o¤ers to Expert 1

are o¤-equilibrium, so passive belief has no bite. For later use, we note that the highest posterior

belief on the bad state !2 can be written as Pr(!2js; ee) where ee = argmaxe f2(sje)=f1(sje). We say
that an expert has the most pessimistic belief if he believes that the other expert has taken e¤ort

ee and has observed the signal s.
3.4 Equilibrium information acquisition and referral

Now we put together our earlier results and state the following (proof in the Appendix).

Proposition 3 There is an equilibrium characterized by the triple [e�1; bs�; p�1] such that i) (e�1; bs�)
maximize (13) given p�1, and ii) p

�
1 is given by (12) at bs and e�1. The equilibrium strategies and

beliefs are:

1) Expert 1 chooses e¤ort e�1 and refers a client with any signal s > bs� at price p�1 and keeps other
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clients.

2) Expert 2 chooses zero e¤ort, does not refer, and accepts a referral if and only if the referral price

is at most p�1.

3) If Expert 2 receives a referral at a price di¤erent from p�1, he continues to believe that Expert 1

has chosen e¤ort e�1 and referred a client with signal s > bs�.
4) If Expert 1 receives a referral o¤er from Expert 2 at any price, Expert 1 has the most pessimistic

belief (he believes that Expert 2�s e¤ort is ee and his signal is s, where ee = argmaxe f2(sje)=f1(sje)).
In Proposition 3, the �rst three points in the strategy and belief description follow directly from

the previous two subsections. The fourth point is about Expert 1�s response against o¤-equilibrium

referral prices. We specify that Expert 1 has the most pessimistic belief. This is necessary to deter

Expert 2 from deviating to a positive e¤ort, and referring a client when the signal indicates an

expected loss. If Expert 1 believes that Expert 2 has taken no e¤ort, he will accept any o¤er p

when T � (cL + cH)=2� p � 0. Now if Expert 2 chooses e¤ort e2 > 0, and he observes an s where

his expected cost is higher than the ex ante cost: Pr(!1js; e2)(cL + �) + Pr(!2js; e2)(cH � �) >

(cL + cH)=2, Expert 2 will pro�t by successfully referring at p = T � (cL + cH)=2. Of course, this

is inconsistent with Proposition 2, so Expert 1 believing Expert 2 having taken zero e¤ort cannot

be part of o¤-equilibrium belief. To support the equilibrium, we have chosen the most pessimistic

o¤-equilibrium belief when no price is ever o¤ered in equilibrium, and show in the proof that Expert

2 has no pro�table deviation from zero e¤ort. The �nal step in the proof is a standard, �xed-point

argument for the existence of [e�1; bs�; p�1].
Expert 2 does not exert any e¤ort, which, of course, is ine¢ cient. What about Expert 1�s

equilibrium e¤ort and referrals? Using Proposition 1, and the �rst-order condition for Expert 1�s
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equilibrium e¤ort, we write down the conditions for the referral equilibrium [e�1; bs�; p�1]:
T �

(cL +�)

Z s

bs�f1(xje�1)dx+ (cH ��)
Z s

bs�f2(xje�1)dxZ s

bs�f1(xje�1)dx+
Z s

bs�f2(xje�1)dx
= p�1 = T � cLf1(bs�je�1) + cHf2(bs�je�1)

f1(bs�je�1) + f2(bs�je�1) (15)

0:5

Z s

bs�
�
[p�1 � (T � cL)]

@f1(xje�1)
@e1

+ [p�1 � (T � cH)]
@f2(xje�1)
@e1

�
dx = �0(e�1): (16)

Proposition 4 In an equilibrium, Expert 1�s e¤ort and referral threshold cannot be �rst best.

Furthermore, given equilibrium e¤ort e�1, Expert 1�s referral threshold bs� is too high, f2(bs�je�1) >
f1(bs�je�1), so Expert 1 sometimes keeps a client even when his expected service cost is higher than
Expert 2�s.

At the equilibrium referral threshold, Expert 1�s expected cost at bs� equals Expert 2�s expected
cost when signals are all above bs�. Given � > 0 and MLRP, equality of the Expert 1�s �marginal�

cost and Expert 2�s �average�cost requires f2(bs�je�1) > f1(bs�je�1). (See also the proof of Proposition
4 in the Appendix.)

What about Expert 1�s equilibrium e¤ort? Using (15), we rewrite (16) as

0:5

�
cH � cL
2

� Z s

bs�
8>><>>:
2f1(bs�je�1)@f2(xje�1)@e1

� 2f2(bs�je�1)@f1(xje�1)@e1
f1(bs�je�1) + f2(bs�je�1)

9>>=>>; dx = �0(e�1): (17)

The left-hand side of this expression is the marginal bene�t of e¤ort. We already have noted that

cH � cL > 2�, so that compared to the �rst best, the cost di¤erential cH � cL a¤ects the marginal

bene�t more strongly than the cost saving �. However, we have bs� strictly higher than the value
at the cost-e¤ective threshold (where f2(sje�1) = f1(sje�1)), so the integral is smaller. Moreover, the

weight on the partial derivative @f2=@e1 is smaller than 1, while the weight on @f1=@e1 is larger

than 1. These two e¤ects reduce the marginal bene�t. In sum, the equilibrium e¤ort may be

smaller or larger than the �rst best.8

8In fact, the proof in the Appendix shows that even if Expert 1 referred a client to Expert 2 if and only
if the signal indicated the bad state to be more likely, Expert 1�s e¤ort would still be excessive.
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Finally, we remark that the characterization of the referral equilibrium in (15) and (16) does not

prove uniqueness. Although examples that we have constructed so far have all produced a unique

equilibrium, we have not proven it. Formally, Lemma 3 does show that for any given e¤ort, (15)

admits a unique solution for the price and referral threshold. It remains possible, however, that

(16) admits multiple solutions in e¤ort. However, our characterization applies to every equilibrium.

4 Organizations

Equilibria in the referral market are ine¢ cient. An expert organization can perform better. As

we have hypothesized in the Introduction, the key di¤erence between an open market and an

organization is that service costs ex post become veri�able within an organization. The reassignment

of cost responsibiity is possible. We present a de�nition:

De�nition 2 (Cost-transfer Protocol) Referrals are said to follow the cost-transfer protocol

when the referring expert bears the client�s cost when service is provided by the referred expert.

The cost-transfer protocol allows an organization to solve the adverse selection problem by

transferring costs between experts. When an expert within an organization refers a client to a

fellow expert, he is to be held responsible for the costs to be incurred by the referred expert. In

other words, an expert fully internalizes the cost consequence of referring the client to another

expert.

Using the cost-transfer protocol, many organizations, such as integration and partnership, can

achieve the �rst best. Expert 1 buys out Expert 2, becomes the owner, performs all information

acquisition, and refers clients whose signals indicate a higher likelihood of the bad state. Expert 2

becomes an employee, and any cost incurred will be the �rm�s responsibility. Obviously, Expert 2

buying out Expert 1 achieves the same. Alternatively, the experts can form a partnership. Here,

each expert will acquire information, and refers e¢ ciently. The partnership contract speci�es that

an expert making a referral fully reimburses the service expense.

22



The (simplistic) solution relies on an expert does nothing other than providing service at a

predetermined set of costs. We now consider a richer environment in which an expert�s service

includes an additional input: he also supplies an e¤ort that may reduce costs. Cost responsibility

implies an incentive of cost reduction. But the cost-transfer protocol in organizations such as

integration and partnership will mute this incentive. We will demonstrate a tradeo¤ between

referral e¢ ciency and cost e¢ ciency, but �rst we extend the basic model to include cost reduction.

4.1 Cost-reduction e¤ort

We enrich the model in Subsection 2.1 with general cost reduction. First, a client�s service cost

is now randomly distributed on a positive support [c; c]. Next, each expert has a second hidden

action: a cost-reduction e¤ort r � 0 (besides the information-acquisition e¤ort). Then we de�ne

four distributions Gji on [c; c], where G
j
i is the distribution of Expert j�s service cost in state !i,

i; j = 1; 2. The following table de�nes experts�expected costs across states and at e¤ort r:

state !1 state !2

Expert 1�s expected cost
Z c

c
cdG11(cjr) = cL � r

Z c

c
cdG12(cjr) = cH � r

Expert 2�s expected cost
Z c

c
cdG21(cjr) = cL +�� r

Z c

c
cdG22(cjr) = cH ��� r

so Gji (�jr) is Expert j�s cost distribution at e¤ort r and state i, and cL, cL + �, cH ��, and cH

are expected costs at zero cost e¤ort. The e¤ort r reduces each expert�s expected cost by r in

each state.9 An expert incurs a disutility  (r) from e¤ort r, and the function  is increasing and

convex, with lim
r!0

 0(r) = 0, and lim
r!�

 0(r) = +1. The cost e¤ort and its disutility have the usual

interpretation: task management, work hours, attention, etc. The last assumptions of the Inada

sort ensure that cost comparative advantage is always valid because expected cost reduction never

exceeds �. The cost e¤ort is to be taken when an expert provides service. We de�ne the e¢ cient

cost e¤ort by r� � argmaxr[r �  (r)], and the �rst-best net cost reduction 
 � r� �  (r�).

Cost-reduction and information-acquisition e¤orts are orthogonal in the �rst best and in the

9We can make the cost reductions di¤erent across states. This adds nothing conceptually, but burdens
with more notation.
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market. When each expert is fully responsible for service cost, he chooses e¤ort r� which results

in the cost saving 
. In the �rst best and the market-referral model, both experts take cost e¤ort

r�, so we simply rede�ne cL, cL + �, cH � �, and cH by lowering each by 
. The �rst best and

equilibria now refer to these rede�ned values. Characterizations of equilibrium information e¤ort

and referral remain the same. More important, equilibria derived in the previous section do not

depend on cost saving, 
.10

4.2 Tradeo¤ in an organization: cost comparative advantage versus cost e¤ort

In the enriched model, we use the full-support cost distribution assumption. Contracts for the

e¢ cient cost e¤ort by exploiting shifting cost-distribution supports are infeasible. An expert takes

e¤ort r� if and only if he is fully responsible for costs. In principle, organizations can employ partial

cost-sharing contracts (the referring expert, for example, being responsible for 50% of cost) so that

e¤orts between 0 and r� can be implemented. For brevity, we do not consider partial cost-sharing

contracts because they would not change economic principles. In other words, we continue to adopt

the cost-transfer protocol: all service costs are to be borne by the referring expert.

The cost-transfer protocol, de�ned above, eliminates adverse selection, but it also eliminates

the cost e¤ort. The referred expert will not take e¤ort to realize the net cost saving 
. This is the

main tradeo¤. Now we adopt the accounting convention that the tari¤ stays with the expert who

initiates the referral, so under cost-transfer protocol all referrals will be accepted with a zero price.

We continue with the assumption that half of all clients are matched with one expert� although

the two experts operate within an organization. Consider Expert 1, and suppose that he has taken

information-acquisition e¤ort e1, and receives a signal s on a client. His own expected service cost is

Pr(!1js; e1)(cL�
)+Pr(!2js; e1)(cH�
) because he chooses cost e¤ort r�. Upon a referral, Expert

2 is not responsible for service cost, so he takes zero cost e¤ort. From Expert 1�s perspective, if the

client is referred to Expert 2, Expert 1 pays a service cost Pr(!1js; e1)(cL+�)�Pr(!2js; e1)(cH��).

10The key Lemma 3 is una¤ected because if each of cL and cH is reduced by 
, the solution to the equation
there remains the same. The value of the equilibrium price will also be reduced by 
, so the equilibrium
e¤ort becomes the same.
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Clearly, Expert 1 refers the client if and only if doing so saves cost or if signal s is larger than es1
de�ned by

f1(es1je1)(cL � 
) + f2(es1je1)(cH � 
) = f1(es1je1)(cL +�) + f2(es1je1)(cH ��): (18)

Simplifying (18), we obtain the following (proof in the Appendix):

Lemma 4 At e¤ort e1, Expert 1 refers a client to Expert 2 if and only if signal s is higher than

es1, where
f1(es1je1)
f2(es1je1) = �� 


�+ 

� 1: (19)

The threshold es1 is �rst best at 
 = 0, and increases to s as 
 increases to �.
Expert 1 will take cost e¤ort r� for his clients to lower his expected cost by 
, but under the

cost-transfer protocol, Expert 2 will not. If a signal indicates that Expert 2�s expected cost is lower,

it must be because the bad state is much more likely than 1=2. Furthermore, as the net saving from

cost e¤ort 
 increases, cost comparative advantage becomes less important, so referrals become less

likely.

From Lemma 4, Expert 1�s total expected cost from e¤ort e1 is

0:5

8>><>>:
Z es1
s
[f1(xje1)(cL � 
) + f2(xje1)(cH � 
)]dx+Z s

es1 [[f1(xje1)(cL +�) + f2(xje1)(cH ��)]dx

9>>=>>;+ �(e1): (20)

Expert 1�s payo¤ is not aligned with the social return to information-acquisition e¤ort. In the �rst

best, Expert 2 chooses cost e¤ort r�, but, in an organization, Expert 2 chooses zero cost e¤ort. We

present (proof in the Appendix):

Lemma 5 Expert 1 does not choose the �rst-best information-acquisition e¤ort in the cost-transfer

protocol except at 
 = 0. As 
 increases to �, Expert 1�s information-acquisition e¤ort decreases

to 0.

Information-acquisition e¤ort is bene�cial only if it leads to referrals. When cost e¤ort is

ine¤ective (
 = 0), Expert 1 chooses the �rst-best information e¤ort because he internalizes cost
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comparative advantage. As 
 increases, cost reduction becomes more important, and Expert 1�s ex

ante expected cost becomes lower, so he refers less often. In the limit when 
 = �, Expert 1 does

not acquire information.

Lemmas 4 and 5 hold in a symmetric fashion for Expert 2. We now state these results (but

omit their proofs).

Lemma 6 At e¤ort e2, Expert 2 refers a client to Expert 1 if and only if signal s is lower than es2,
where

f1(es2je2)
f2(es2je2) = � + 


�� 
 � 1: (21)

The threshold es2 is �rst best at 
 = 0, and decreases to s as 
 increases to �.
Analogous to (20), Expert 2�s expected cost from e¤ort e2 is

0:5

8>><>>:
Z es2
s
[f1(xje2)cL + f2(xje2)cH ]dx+Z s

es2 [f1(xje2)(cL +�� 
) + f2(xje2)(cH ��� 
)]dx

9>>=>>;+ �(e2):

Lemma 7 Expert 2 does not choose the �rst-best information-acquisition e¤ort in the cost-transfer

protocol except at 
 = 0. As 
 increases to �, Expert 2�s information-acquisition e¤ort decreases

to 0.

4.3 Comparison between organization and market

Let ee1 and ee2 be Expert 1�s and Expert 2�s information e¤orts in the cost-transfer protocol. Expert
1 provides service to clients with signals below es1, and refers those with signals above. Expert
2 provides service to clients with signals above es2, and refers those with signals below. Referrals
are always accepted, but the expert who receives a referral will take zero cost e¤ort. The total
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equilibrium expected costs per client is

0:5

8>><>>:
0:5

Z es1
s
[f1(xjee1)(cL � 
) + f2(xjee1)(cH � 
)]dx+

0:5

Z s

es1 [f1(xjee1)(cL +�) + f2(xjee1)(cH ��)]dx+ �(ee1)
9>>=>>;

+0:5

8>><>>:
0:5

Z es2
s
[f1(xjee2)cL + f2(xjee2)cH ]dx+

0:5

Z s

es2 [f1(xjee2)(cL +�� 
) + f2(xjee)(cH ��� 
)]dx+ �(ee2)
9>>=>>; :

These four integrals correspond to di¤erent cases of experts retaining and referring clients. We

simplify the expected cost per client in the cost-transfer protocol to�
cL + cH
2

�
� 0:5

(



Z es1
s
[f1(xjee1) + f2(xjee1)]dx+�Z s

es1 [f2(xjee1)� f1(xjee1)]dx
)

�0:5
�



Z s

es2 [f1(xjee2) + f2(xjee2)]dx+�
Z s

es2 [f2(xjee2)� f1(xjee)]dx
�

+0:5[�(ee1) + �(ee2)] � ECt(
): (22)

Next, consider a market equilibrium.11 Recall from Subsection 3.4 that the equilibrium alloca-

tion is given by Expert 1�s e¤ort e�1 and referral threshold bs�, and Expert 2�s zero e¤ort and lack of
referral. Each expert uses the �rst-best cost e¤ort for a 
 net cost reduction. The total expected

cost per client in the equilibrium is

0:5

8>><>>:
Z bs�
s
[f1(xje�1)cL + f2(xje�1)cH ]dx+Z s

bs� [f1(xje�1)(cL +�) + f2(xje�1)(cH ��)]dx+ �(e�1)

9>>=>>;+ 0:5
�
cL + cH
2

�
� 
:

Here, each expert takes cost e¤ort, so the net cost saving 
 applies to each client. Expert 1 takes

equilibrium e¤ort e�1, and obtains a signal. The �rst integral is the expected cost of Expert 1�s

clients with signals below the equilibrium threshold bs�, and the second integral is the expected cost
of Expert 1�s referred clients. Expert 2 neither takes e¤ort nor refers in equilibrium, so his expected

cost is one half of the sum of cL and cH . We simplify the total equilibrium expected cost in the

market equilibrium to�
cL + cH
2

�
� 0:5

�
�

Z s

bs� [f2(xje�1)� f1(xje�1)]dx� �(e�1)
�
� 
 � ECm(
): (23)

11If there are many equilibria, pick any one for the comparison to follow.
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Finally, from Subsection 2.3, we subtract 
 from (4) evaluated at the �rst-best e¤ort to obtain the

expected cost under the �rst best, and we call this ECfb(
). The following presents the tradeo¤

between the market and the expert organization under cost-transfer protocol (the proof in the

Appendix).

Proposition 5 The expected cost per client is lower under cost-transfer protocol than in a market

equilibrium if and only if the net cost saving 
 is below a threshold b
, 0 < b
 < �.
When net cost saving 
 vanishes, the cost-transfer protocol achieves the �rst best. At 
 = 0,

we have ECt(
) = ECfb(
). The market equilibrium never achieves the �rst best. However, the

market equilibrium always achieves 
 cost saving because each expert bears his own costs. As


 increases from 0, expected costs in the �rst best, market, and cost-transfer protocol fall. Both

ECfb(
) and ECm(
) fall at a unit rate as 
 increases. What about the expected cost ECt(
)? As 


increases, referrals become less often under cost-transfer protocol, and information e¤ort becomes

less important (see the last four lemmas). As a result, ECt(
) falls at a rate less than 1 as 


increases. Beyond a critical value, expected cost of the market equilibrium becomes lower than

cost-transfer protocol. The critical value b
 is obtained by the solution of ECm(b
) = ECt(b
).
We illustrate the three expected costs ECm(
) and ECt(
) and ECfb(
) in the following Figure

2. The �rst-best cost ECfb(
) is a parallel downward shift of the cost in the market ECm(
). The

cost ECt(
) in the expert organization is at the �rst-best level at 
 = 0, but decreases less steeply

than the other two.

The basic economics principle is this. In the market, experts work hard to reduce their own

costs, but an expert acquires private information, so referrals are subject to adverse selection.

In an organization, an expert works hard only if he is responsible for the cost, but cost-transfer

protocol avoids asymmetric information. According to Proposition 5, transfer-cost protocol in an

organization performs better than the market if and only if cost comparative advantage is more

important than cost saving.
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Figure 2: Expected cost and critical cost reduction b

4.4 Perspectives on legal and medical organizations

Our theory o¤ers a new perspective� tradeo¤ between adverse selection in the market and shirking

within an organization. Proposition 5 predicts that experts form professional organizations when

the cost comparative advantage from referrals is important, but that experts operate as solo-

practitioners when work e¤ort is more important. Using U.S. census data, Garicano and Hubbard

(2009) show that lawyers form partnerships when they consult for corporations in markets such

as banking, environment, and real estate developments. Our theory provides the foundation for

the claim in Garicano and Hubbard (2009). The complexity in commercial dealing likely calls

for disparate knowledge, so cross-�eld referrals are critical. Lawyers in domestic, insurance, and

criminal ligitations more likely work as independent practitioners. Noncommercial cases are more

idiosyncratic, so a lawyer�s own e¤ort is more critical.

Another illustration of our theory is in the malpratice-liability and personal litigations. Accord-

ing to Parikh (2006/2007), �top-end�lawyers in medical malpractice and product liability work in
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large practices, but �low-end�lawyers in automobile and �slip-and-fall�accidents work in solo prac-

tices. Our theory provides the rationale for the di¤erence in the work organization of these lawyers.

Top-end lawyers deal with more complex cases, so coordination between experts is important. By

contrast, low-end lawyers may not have to rely on referrals that often.

Referral fees and fee-splitting are common among legal professionals, so our model applies

straightforwardly. Nevertheless, our theory can also provide a normative view on the health care

sector. In most countries, medical doctors are prohibited from obtaining �nancial bene�ts when

they refer patients. The restriction is likely a safeguard against con�ict of interests.12 In our

model, referral is a �nancial transaction, so it is inconsistent with the current practice. However,

within Accountable Care Organizations, which are promoted by the U.S. healthcare reform, cost

consequences of referrals are internalized. Proposition 5 implies that when referrals with prices are

disallowed, ACOs may achieve more cost savings when cost comparative advantage is important.

However, as Frandsen and Rebitzer (2015) point out, free-riding problems in ACOs can be severe,

so cost comparative advantage must be balanced against muted work incentives in ACOs.

5 Robustness

We now discuss a number of robustness issues with the basic model of market referral. First,

we assume only two states, !1 and !2. This can be regarded as a normalization given that we

consider only two experts. If there are many (even a continuum of) states, then we proceed by �rst

de�ning the subset of states for which Expert 1 is less expensive than Expert 2, and then call that

subset !1. Second, we assume that the two states are equally likely. If they are not, the posterior

probabilities in (1) will be modi�ed by prior probabilities attached to the conditional densities f1

and f2. However, MLRP is una¤ected, and it remains valid that Expert 2�s cost of providing service

to a client is lower than Expert 1 if and only if the client�s signal is higher than a threshold. Our

12However, Pauly (1979) argues that referral with prices can improve patient welfare when markets are
imperfectly competitive. Biglaiser and Ma (2007) show that a physician�s self-referral at a price may lead to
higher quality, thus bene�tting some consumers.
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computation is made easier by states being equally likely, but this assumption does not lead to any

conceptual di¢ culties.

We have ignored capacities and variable returns. Here, there is another source of cost compar-

ative advantage. The initial matching process may favor, say, Expert 1, who now has too many

clients. Decreasing returns may lead him to refer some clients to Expert 2 even before he undertakes

any e¤ort (so has received no signal). It is a complication that may interfere with the construction

of Expert 2�s equilibrium belief about the referred clients�states. An analysis will have to start

with the initial match between clients and experts. However, we feel that this is beyond the scope

of our current research.

Capacity and variable returns may also change the comparison between market and organiza-

tion. Clearly, an organization is better able to enjoy economies of scale, manage capacities, or both.

The market is likely better modeled by a random initial match, but an organization can channel

clients to its experts e¢ ciently. The details in Proposition 5 may have to be altered but the basic

principle of tradeo¤ between adverse selection and cost-reduction incentive remains valid.

In the rest of this section, we discuss two issues in details. First, we endogenize the tari¤ T

rather than take it as given. And second, we study the equilibrium of the referral game when the

cost advantage � is larger than the average cost, relaxing our assumption � < (cL + cH)=2.

5.1 Equilibrium tari¤

We modify the referral market game in Section 3 to include a Bertrand-competition game. That is,

in Stage 0, at the time when the clients�types are drawn, each expert announces a tari¤. Consumers

observe these tari¤s, and choose an expert for service. A consumer promises to pay the required

tari¤ to the chosen expert or to a referred expert, if any, when service is provided.13

Recall that each expert can serve a client at an expected cost (cL+ cH)=2. If an expert neither

13An expert cannot revise the tari¤ after he has exerted e¤ort and obtained the signal. Both e¤ort and
signal are unobserved to the consumer. The issue of commitment is beyond the scope here. Furthermore,
an expert cannot dump a client after the signal has been observed.
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puts in e¤ort nor refers a client, his tari¤cannot be lower than (cL+cH)=2. Indeed, we now construct

an equilibrium in which both experts set tari¤s at (cL+cH)=2. Given this pair of (identical) tari¤s,

the continuation equilibrium is the market equilibrium in Section 3. Expert 2 neither exerts e¤ort

nor refers. When Expert 2 accepts a referral from Expert 1, his expected payo¤ is 0; see (12) in

Proposition 1. Given Expert 1�s tari¤ (cL + cH)=2, and the continuation equilibrium, it is optimal

for Expert 2 to o¤er (cL + cH)=2:

Given that Expert 2 sets the tari¤ at (cL + cH)=2, Expert 1 will have no clients if he sets a

higher tari¤. Now suppose Expert 1 undercuts Expert 2 slightly, o¤ering to provide service at a

tari¤ just below (cL + cH)=2. All clients will solicit services from Expert 1. Expert 1 then follows

the continuation equilibrium in Subsection 3.2 for each client. Therefore, in equilibrium Expert 1

will set the same tari¤ (cL + cH)=2, but all clients must �rst subscribe to Expert 1. After Expert

1 has observed a client�s signal, he refers the client to Expert 2 if and only if the signal is higher

than bs, the equilibrium threshold in (12).

Our construction is similar to a standard Bertrand game with �rms having di¤erent (and con-

stant) marginal production costs: in equilibrium the more e¢ cient �rm sets a price equal to the

marginal cost of the less e¢ cient �rm. Expert 1 is more e¢ cient because he invests in information

acquisition in the continuation equilibrium. Here, the �more e¢ cient�Expert 1 sets the same tari¤

as the �less e¢ cient� Expert 2, but takes all the surplus from trade. In equilibrium all clients

initially seek services from Expert 1, who later refers some to Expert 2.14

5.2 Experts with large cost comparative advantage

We have assumed that the cost comparative advantage parameter � is smaller than (cH � cL)=2,

so for both experts, the service cost in state !1 is lower than in state !2. This is our interpretation

14Clients do know about experts�cost comparative advantage. (In equilibrium, they pick Expert 1 even
when both o¤er the same tari¤.) If they do not, their strategies must not depend on experts�identities, so
clients pick experts randomly when tari¤s are identical. An equilibrium may then fail to exist when tari¤s
can be chosen from a continuous set. The more e¢ cient Expert 1 always undercuts slightly. The usual way
to restore existence is to discretize possible tari¤ o¤ers. If the di¤erence between possible tari¤s is su¢ ciently
small (like one cent), Expert 1 will just undercut to capture all clients when Expert 2 o¤ers T = (cL+cH)=2.
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for the state !1 being good and state !2 being bad. However, the value of � can be larger than

(cH � cL)=2. In this case, we have cH �� < cL +�. For Expert 2, if the client�s state is !1, the

service cost becomes higher than if the state is !2. Now, to Expert 2 !1 looks like a bad state,

while !2 looks like a good state (but the opposite is true for Expert 1). This cost speci�cation

actually allows equilibrium referrals from each expert to the other.

The derivation of Expert 1�s equilibrium strategy, and Expert 2�s beliefs remain unchanged, and

Proposition 4 in Subsection 3.4 continues to hold. We only wish to note that Expert 2�s expected

cost of providing service is decreasing in Expert 1�s referral threshold, so the expression in (10) is

decreasing in bs; in Figure 1, the dashed line is downward sloping.
For Expert 2, suppose now that he has taken e¤ort e2. We construct an equilibrium strategy

for Expert 2�s referral and e¤ort. Again, in an equilibrium, Expert 1 accepts a referral if the price

is below a threshold, say p2. Given the tari¤, if Expert 2 uses e¤ort e2 and receives signal s, he

refers if and only if

p2 � T � (cL +�) f1(sje2)
f1(sje2) + f2(sje2)

� (cH ��) f2(sje2)
f1(sje2) + f2(sje2)

: (24)

By MLRP, and cL + � > cH ��, the expected cost in (24) is decreasing in s, so the right-hand

side of (24) is increasing in s. By passive belief, in equilibrium, the signal threshold for Expert 2�s

referral at p2 is bs2 such that (24) holds as an equality at s = bs2. In equilibrium, Expert 2 refers a
client to Expert 1 if and only if s < bs2. This is the key di¤erence. A higher value of the signal s
indicates a higher likelihood of state !2. Expert 2�s expected cost is decreasing in the signal, so he

refers a client if and only if the signal is lower than a threshold. This is favorable news to Expert

1.

Expert 1 receives all those clients with signals below bs2, so he accepts Expert 2�s referral if and
only if

T �
cL

Z bs2
s
f1(xje2)dx+ cH

Z bs2
s
f2(xje2)dxZ bs2

s
f1(xje2)dx+

Z bs2
s
f2(xje2)dx

� p2;

where the various integrals average out those signals below bs2 across the two states. Given e¤ort
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e2, an equilibrium in referrals exists if there are price p2 and threshold bs2 such that
T � (cL +�) f1(bs2je2) + (cH ��) f2(bs2je2)

f1(bs2je2) + f2(bs2je2) = p2 = T �
cL

Z bs2
s
f1(xje2)dx+ cH

Z bs2
s
f2(xje2)dxZ bs2

s
f1(xje2)dx+

Z bs2
s
f2(xje2)dx

:

(25)

This is the characterization of the referral equilibrium for Expert 2, as Proposition 1 is for Expert

1. Such price p2 and threshold bs2 satisfying (25) must exist. Indeed, by MLRP, cL < cH , and

cL +� > cH ��, the ratio in the left-hand side of (25) is decreasing in bs2, while the ratio in the
right-hand side is increasing.15

For the continuation equilibrium with price p2 and threshold bs2, Expert 2�s per-client expected
payo¤ from e¤ort e2 can be simpli�ed to�
T � cL + cH

2

�
+ 0:5

Z bs2
s
f[p2 � (T � cL ��)]f1(xje2) + [p2 � (T � cH +�)]f2(xje1)]g dx� �(e2):

(26)

This has the same interpretation of Expert 1�s expected payo¤ in (13). Expert 2�s optimal e¤ort is

one that maximizes (26), and its �rst-order condition is

0:5

Z bs2
s

�
[p2 � (T � cL ��)]

@f1(xje2)
@e2

+ [p2 � (T � cH +�)]
@f2(xje2)
@e2

�
dx = �0(e2): (27)

Expert 2�s equilibrium strategy is therefore characterized by price p2, threshold bs2, and e¤ort e2
satisfying (25) and (27).

Using the same steps as in the proof of Proposition 4, we can show that Expert 2�s equilibrium

e¤ort is never �rst best. Furthermore, given the equilibrium e¤ort e2, Expert 2�s equilibrium referral

threshold bs2 satis�es f2(bs2je2) < f1(bs2je2), so Expert 2 sometimes retains a client even when his
expected service cost is higher than Expert 1�s.

15MLRP implies that the distribution f1 is �rst-order stochastically dominated by f2.
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6 Conclusion

We posit a theory about how an organization can overcome market frictions due to hidden action

and hidden information. This is a novel approach in the study of credence goods. The extant

literature has looked at individual experts operating in a market to serve clients. There has been a

lack of focus on how organizations may change experts�incentives. Although an organization can

overcome adverse selection by the cost-transfer protocol, this leads to reduced work incentives. We

derive a theory of the �rm based on cost of adverse selection in the market compared to cost of

reduced work incentive within an organization.

We have made some simplifying assumptions. It may be interesting to study the referral game

when clients�bene�ts, not just their costs, are uncertain. Can referral convey information about

bene�ts? Can a client rely on an expert to tell him that a service is not worthwhile? Our experts

are pro�t maximizers. If one considers the health market as a speci�c application, physicians are

known to be altruistic, so the pure pro�t-maximization assumption is invalid. It will be interesting

to study how altruistic experts will play the referral game.

In the details of our model, we have also made a number of assumptions. Multiple rounds of

information e¤orts are assumed away. Nor are multiple rounds of referral price o¤ers allowed. We

have also made use of the constant returns to scale in services. Any of these issues may be relaxed

for a more general model.
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Appendix

Proof of Lemma 3: By MLRP,
f2(xje1)
f1(xje1)

is increasing in x, so for any s we haveZ s

s
f2(xje1)dxZ s

s
f1(xje1)dx

�

Z s

s

f2(xje1)
f1(xje1)

� f1(xje1)dxZ s

s
f1(xje1)dx

>

Z s

s

f2(sje1)
f1(sje1)

f1(xje1)dxZ s

s
f1(xje1)dx

=
f2(sje1)
f1(sje1)

: (28)

It follows that Z s

s
f1(xje1)dxZ s

s
f1(xje1)dx+

Z s

s
f2(xje1)dx

<
f1(sje1)

f1(sje1) + f2(sje1)

and Z s

s
f2(xje1)dxZ s

s
f1(xje1)dx+

Z s

s
f2(xje1)dx

>
f2(sje1)

f1(sje1) + f2(sje1)
:

Therefore, at any s < s,

cL

Z s

s
f1(xje1)dx+ cH

Z s

s
f2(xje1)dxZ s

s
f1(xje1)dx+

Z s

s
f2(xje1)dx

>
cLf1(sje1) + cHf2(sje1)
f1(sje1) + f2(sje1)

: (29)

Applying L�Hospital�s rule, we have

lim
s!s

(cL +�)

Z s

s
f1(xje1)dx+ (cH ��)

Z s

s
f2(xje1)dxZ s

s
f1(xje1)dx+

Z s

s
f2(xje1)dx

=
(cL +�)f1(sje1) + (cH ��)f2(sje1)

f1(sje1) + f2(sje1)

=
cLf1(sje1) + cHf2(sje1)��[f2(sje1)� f1(sje1)]

f1(sje1) + f2(sje1)
<
cLf1(sje1) + cHf2(sje1)
f1(sje1) + f2(sje1)

:

We have shown that at s su¢ ciently near s (10) is smaller than (9).

Now at s, we have

(cL +�)

Z s

s
f1(xje1)dx+ (cH ��)

Z s

s
f2(xje1)dxZ s

s
f1(xje1)dx+

Z s

s
f2(xje1)dx

=

cL

Z s

s
f1(xje1)dx+ cH

Z s

s
f2(xje1)dxZ s

s
f1(xje1)dx+

Z s

s
f2(xje1)dx

>
cLf1(sje1) + cHf2(sje1)
f1(sje1) + f2(sje1)

:
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We have shown that at s su¢ ciently near s, (10) is larger than (9). Therefore, the equation in the

lemma must have a solution bs.
Finally, for uniqueness, rewrite the equation in the lemma as

(cL +�) + (cH ��)

�Z s

s
f2(xje1)dx

�
=f2(sje1)�Z s

s
f1(xje1)dx

�
=f1sje1)

� f2(sje1)
f1(sje1)

1 +

�Z s

s
f2(xje1)dx

�
=f2(sje1)�Z s

s
f1(xje1)dx

�
=f1sje1)

� f2(sje1)
f1(sje1)

=

cL + cH
f2(sje1)
f1(sje1)

1 +
f2(sje1)
f1(sje1)

: (30)

By MLRP, the inverse hazard rates satisfy
�Z s

s
f2(xje1)dx

�
=f2(sje1) >

�Z s

s
f1(xje1)dx

�
=f1(sje1);

see also (28) above. As s changes, the rates of change of the left-hand and right-hand sides of (30)

will never be identical. As separate functions, the graphs of (9) and (10) can only cross each other

once. In other words, there can only be one solution.

Proof of Proposition 1: The two equations in (12) include the equation in Lemma 3, which

already establishes a solution for bs. We then set the value of p1 according to (12). From Lemma 1,

equilibrium referrals are those with signals above a threshold, so we simply set Expert 1�s referral

threshold at bs. From Lemma 1, Expert 2 accepts a referral if and only if the price is below a

threshold, so we set Expert 2�s acceptance threshold at p1.

Proof of Proposition 2: Assume, to the contrary, that Expert 2 exerts a strictly positive

e¤ort e2 in an equilibrium. By Lemma 1, Expert 2 refers a client if and only if the client�s signal is

above a threshold, say es. Let this referral be made at a price p2 which will be accepted by Expert 1
in equilibrium.
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At signal es, Expert 2�s expected cost is (cL +�)Pr(!1jes; e2) + (cH ��)Pr(!2jes; e2)
=

(cL +�)f1(esje2) + (cH ��)f2(esje2)
f1(esje2) + f2(esje2)

<

(cL +�)

Z s

es f1(xje2)dx+ (cH ��)
Z s

es f2(xje2)dxZ s

es f1(xje2)dx+
Z s

es f2(xje2)dx
(31)

<

cL

Z s

es f1(xje2)dx+ cH
Z s

es f2(xje2)dxZ s

es f1(xje2)dx+
Z s

es f2(xje2)dx
(32)

where the inequality in (31) follows from MLRP (see also (29) in the proof of Lemma 3). Now the

derivative of (31) with respect to � isZ s

es f1(xje2)dx�
Z s

es f2(xje2)dxZ s

es f1(xje2)dx+
Z s

es f2(xje2)dx
< 0;

where the inequality is due to f2(�je2) �rst-order stochastically dominating f1(�je2), an implication

of MLRP. Hence, (31) is decreasing in �. By reducing the value of � to zero, we obtain (32),

Expert 1�s expected cost of providing service to a client conditional on Expert 2�s signal being at

least es.
In sum, because

(cL +�)f1(esje2) + (cH ��)f2(esje2)
f1(esje2) + f2(esje2) <

cL

Z s

es f1(xje2)dx+ cH
Z s

es f2(xje2)dxZ s

es f1(xje2)dx+
Z s

es f2(xje2)dx
it is impossible to �nd p2 to satisfy

T � (cL +�)f1(esje2) + (cH ��)f2(esje2)
f1(esje2) + f2(esje2) � p2 � T �

cL

Z s

es f1(xje2)dx+ cH
Z s

es f2(xje2)dxZ s

es f1(xje2)dx+
Z s

es f2(xje2)dx
(33)

a condition for an equilibrium. This is a contradiction.

Proof of Proposition 3: First, (e�1; bs�) maximize Expert 1�s expected utility (13) given Expert
2�s acceptance threshold p�1 so this is a best response. Second, p

�
1 is given by (12) at bs and e�1, so

acceptance threshold p�1 is a best response. Expert 2�s belief clearly satis�es passive belief.
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We now show that Expert 2�s best response is to choose no e¤ort. Given the most pessimistic

belief, Expert 1 will reject any referral price p where T � Pr(!1js; ee)cL � Pr(!2js; ee)cH < p, so the

minimum price for Expert 1 to accept a referral is p = T � Pr(!1js; ee)cL � Pr(!2js; ee)cH .
Suppose that Expert 2 takes some e¤ort, say e2 > 0. Expert 2�s expected utility from keeping

the client at signal s is T�Pr(!1js; e2)(cL+�)�Pr(!2js; e2)(cH+�). By de�nition, Pr(!2js; e2) �

Pr(!2js; ee), so we have
Pr(!1js; e2)(cL +�) + Pr(!2js; e2)(cH ��) � Pr(!1js; ee)(cL +�) + Pr(!2js; ee)(cH ��)

< Pr(!1js; ee)cL + Pr(!2js; ee)cH :
Therefore,

T � Pr(!1js; e2)(cL +�)� Pr(!2js; e2)(cH ��) > T � Pr(!1js; ee)cL � Pr(!2js; ee)cH = p:

Expert 2 cannot pro�t from deviating to an e¤ort and referring some clients to Expert 1.

It remains to show that the triple [e�1; bs�; p�1] exists. We use a standard �xed-point argument.
Bound Expert 1�s feasible e¤orts by a compact convex set, say a closed interval of the real numbers.

Clearly we can let the referral threshold reside in the signal support, which is convex and compact.

Finally, we can also let the referral price be an element of a compact convex set of real numbers.

De�ne a map 	 that takes an e¤ort, a referral threshold, and a price onto themselves: 	(e1; bs; p1) =
(e01; bs0; p01), where we de�ne 	 by

(e01; bs0) = argmax
e1;bs 0:5

Z s

bs f[p1 � (T � cL)]f1(xje1) + [p1 � (T � cH)]f2(xje1)]g dx� �(e1)(34)

p01 = T �
(cL +�)

Z s

bs f1(xje1)dx+ (cH ��)
Z s

bs f2(xje1)dxZ s

bs f1(xje1)dx+
Z s

bs f2(xje1)dx
: (35)

Here, (34) is Expert 1�s best response against Expert 2�s referral-acceptance price p1 (the same

as the maximization of (13) with respect to e¤ort and referral threshold), while (35) is Expert 2�s

referral-acceptance best response against Expert 1�s e¤ort e1 and referral threshold bs (see also (12)
in Proposition 1).
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Clearly, the Maximum Theorem applies to (34), and there is a selection of the solution (e01; bs0)
which is continuous in p1. Furthermore, p01 in (35) is obviously continuous in e1 and bs. By Brouwer�s
Fixed Point Theorem, 	 has a �xed point (e�1; bs�; p�1).

Proof of Proposition 4: Suppose not, i.e., suppose that in an equilibrium Expert 1�s e¤ort

and referral threshold are �rst best. Then f2(bs�je�1) = f1(bs�je�1); see Subsection 2.3. From the

second equation in (15) we obtain

p�1 � (T � cL) = � (cH � cL)f2(bs�je�1)
f1(bs�je�1) + f2(bs�je�1) = �cH � cL2

p�1 � (T � cH) =
(cH � cL)f1(bs�je�1)
f1(bs�je�1) + f2(bs�je�1) = cH � cL

2
:

We then write (16) as

0:5

�
cH � cL
2

� Z s

bs�
�
@f2(xje�1)
@e1

� @f1(xje�1)
@e1

�
dx = �0(e�1):

However, by assumption cH � cL > 2�. Comparing this simpli�ed (16) with (5), we conclude that

e�1 > efb., so Expert 1�s e¤ort is not �rst best.

Next, suppose, to the contrary, that f2(bs�je�1) � f1(bs�je�1). First, we note that
(cL +�)f1(bs�je�1) + (cH ��)f2(bs�je�1)

f1(bs�je�1) + f2(bs�je�1) � cLf1(bs�je�1) + cHf2(bs�je�1)
f1(bs�je�1) + f2(bs�je�1) +

�[f1(bs�je�1)� f2(bs�je�1)]
f1(bs�je�1) + f2(bs�je�1) :

Therefore, by f2(bs�je�1) � f1(bs�je�1), we have
cLf1(bs�je�1) + cHf2(bs�je�1)
f1(bs�je�1) + f2(bs�je�1) � (cL +�)f1(bs�je�1) + (cH ��)f2(bs�je�1)

f1(bs�je�1) + f2(bs�je�1) :

Now by MLRP, we have (28): Z s

bs�f2(xje�1)dxZ s

bs�f1(xje�1)dx
>
f2(bs�je�1)
f1(bs�je�1) :

It follows that

(cL +�)

Z s

bs�f1(xje�1)dx+ (cH ��)
Z s

bs�f2(xje�1)dxZ s

bs�f1(xje�1)dx+
Z s

bs�f2(xje�1)dx
>

(cL +�)f1(bs�je�1) + (cH ��)f2(bs�je�1)
f1(bs�je�1) + f2(bs�je�1)

� cLf1(bs�je�1) + cHf2(bs�je�1)
f1(bs�je�1) + f2(bs�je�1) ;
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which contradicts (15). We conclude that f2(bs�je�1) > f1(bs�je�1).
Proof of Lemma 4: The expression in the lemma is obtained from solving for the f1=f2 ratio

in (18). Clearly, at 
 = 0, we have f1(es1je1) = f2(es1je1), so es1 is the �rst-best referral threshold
at e¤ort e1: see f1(bsfbje) = f2(bsfbje) in Subsection 2.3. The right-hand side of (19) is strictly
decreasing in 
, and goes to 0 as 
 increases to �. By MLRP, we conclude that es1 must increase
to s.

Proof of Lemma 5: We drop all constants (those that involve only cL and cH) in (20) and

then simplify it to obtain

�
Z es1
s
0:5
[f1(xje1) + f2(xje1)]dx�

Z s

es1 0:5�[f2(xje1)� f1(xje1)]dx+ �(e1):
Di¤erentiating this with respect to e1 and setting it to zero, we get the �rst-order condition:

0:5

(Z es1
s



�
@f1(xje1)
@e1

+
@f2(xje1)
@e1

�
dx+

Z s

es1�
�
@f2(xje1)
@e1

� @f1(xje1)
@e1

�
dx

)
= �0(e1): (36)

Now the �rst-best information e¤ort is given by (5), and we conclude that e1 is never �rst best

except at 
 = 0.

By Lemma 4, es1 tends to s as 
 tends to �. The �rst integral in (36) becomes arbitrarily small
because the integrands are derivatives of densities, which sum to 0 over the support. Obviously,

the second integral tends to 0. Hence, any e1 satisfying (36) must tend to 0.

Proof of Proposition 5: First, at 
 = 0, ECt(
) in (22) is the expected cost at the �rst best

(5). Also, at 
 = �, es1 = s, es2 = s, so ECt(
) in (22) equals
�
cL + cH
2

�
� 
. Because ECm(
) is

the market equilibrium expected cost, it is higher than the �rst best. Hence, ECm(0) > ECt(0).

By inspection, we have ECm(�) < ECt(�).

Next, because the market equilibrium is independent of 
, ECm(
) has a derivative of �1. The

expected cost in ECt(
) is the result of optimal choices of information e¤ort and referral threshold,

so the envelope theorem applies. The derivative of ECt(
) is the partial derivative of (22) with

respect to 
:

dECt(
)
d


= �0:5
(Z es1

s
[f1(xjee1) + f2(xjee1)]dx+ Z s

es2 [f1(xjee2) + f2(xjee2)]dx
)
> �1
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where the inequality follows from es1 < s and es2 > s. Hence, as 
 varies between 0 and �, there is

only point b
 such that ECm(b
) = ECt(b
). The proposition follows.
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