Dynamics of Indirect Land-Use Change: Empirical Evidence from Brazil

S. Andrade de Sá, C. Palmer and S. Di Falco

Working Paper 13/170
January 2013

Economics Working Paper Series
Dynamics of Indirect Land-Use Change: Empirical Evidence from Brazil

Saraly Andrade de Sá
Professorship of Environmental Policy and Economics, ETH Zurich
E-mail address: saraly.andrade@env.ethz.ch

Charles Palmer
Department of Geography and Environment, London School of Economics

Salvatore Di Falco
Department of Economics, University of Geneva

Abstract

The expansion of a given land use may affect deforestation directly if forests are cleared to free land for this use, or indirectly, via the displacement of other land-use activities from non-forest areas towards the forest frontier. Unlike direct land conversion, indirect land-use changes affecting deforestation are not immediately observable. They require the linking of changes occurring in different regions. This paper empirically assesses the possible indirect effects of sugarcane expansion in Brazil’s state of São Paulo, on forest conversion decisions in the country’s Amazon region. Further, it examines the evidence for a mechanism through which these effects might materialize, namely a displacement of cattle ranching activities from São Paulo state to the Amazon. The results suggest a positive relationship between sugarcane expansion and deforestation. This indirect land-use effect is shown to be a dynamic process materializing over 10 to 15 years.

Keywords: Indirect land-use changes; Dynamic effects; Biofuels; Deforestation
1. Introduction

In many tropical countries, agriculture often competes with standing forests for land. Hence, deforestation drivers can be generally understood as factors that increase the rents associated with agricultural expansion. Such factors include increased agricultural output prices, better agro-ecological conditions, lower input prices, better roads and infrastructure as well as technological progress (see, for example, Kaimowitz and Angelsen, 1998; Angelsen and Kaimowitz, 1999; Barbier and Burgess, 2001). The role and the impact of these drivers have commonly been analyzed at the forest frontier, i.e. in regions where forest conversion to agriculture is observed. However, expanding agriculture may also cause indirect land-use changes. These occur when agricultural activities displaced from one region drive expansion of the same land use in another region (Searchinger et al., 2008; Barona et al., 2010; Lapola et al., 2010; Arima et al., 2011). Indeed, diverting land from say pasture for cattle ranching to the production of sugarcane may result in supply shortfalls of the former. Holding demand constant, these supply shortfalls may in turn provide farmers with incentives to create new pastures elsewhere, for example in forest areas.

In this paper, we empirically assess the possible indirect effects of sugarcane expansion in the central and southern regions of Brazil, in particular in the state of São Paulo, on forest conversion decisions in the country’s Amazon region. Further, we examine the evidence for a mechanism through which these effects might materialize, namely a displacement of cattle ranching activities from São Paulo state to the Amazon.

Andrade de Sá et al. (2012) derive the formal conditions under which such a displacement effect may occur. They show that a necessary condition for displacement is that the output of the displaced activity faces a relatively inelastic demand, which might be the case, for instance, if the displaced crop is a staple food produced and consumed locally, or if the country is a major producer and exporter such that its supply affects international prices.
This effect applies to the expansion of any land use including agricultural commodities that could be used either for the production of food or biofuels (see Gallagher, 2008). Focusing on the expansion of the area of land under sugarcane in Brazil for the production of ethanol, we join the debate about the desirability of biofuels as oil substitutes. From the perspective of biofuels providing carbon savings vis-à-vis fossil fuels (e.g. Feng et al., 2010; Righelato and Spracklen, 2007), any potential impact on deforestation will clearly reduce their attractiveness. The reduction in greenhouse gas emissions from oil substitution may be, at least partially, off-set by the decrease in carbon stocks resulting from induced forest conversion.

In Brazil, increased ethanol production resulted in a significant expansion of the amount of land allocated to sugarcane. From 1975 to 2008, the latter increased from 1.9 to 8.9 million hectares such that currently, “sugarcane and its derivatives are the second main primary power source of the national energy matrix, and the domestic ethanol consumption is already superior to the one of gasoline” (MAPA, 2009). Nevertheless, there are growing concerns about the possibility of sugarcane expansion provoking indirect land-use changes leading to deforestation in the Amazon. For example, the World Bank (2011) notes that about two-thirds of the area into which sugarcane expanded came from converting pasture land with the remainder coming from substituting other crops (32%) and from converting natural vegetation (2%). Yet, despite rapid gains in productivity in both sugarcane and pastures, which reduced the indirect effects of agricultural land expansion, “the resulting higher price of land has probably put pressure on pasture expansion further north to the Cerrado and the Amazon biome” (World Bank, 2011: 19).

This paper joins an emerging body of research on indirect land-use change in Brazil. Nassar et al.’s (2008) descriptive statistics for the period 2005-2008 suggest very low indirect land-use changes associated with sugarcane expansion, with 0.08 hectares of deforested land for each additional sugarcane hectare. More recently, de Souza Ferreira Filho and Horridge (2011) investigate the same issue but using a computable general equilibrium model
calibrated with Brazilian data from 2005. According to their simulations over the period 2008-2020, “each extra sugarcane hectare [will be] associated with 0.14 hectares fall in unused [mainly naturally forested] land and with 0.47 hectares fall in pasture”, which is higher than the estimates from Nassar et al. (2008). Utilizing a suite of models, Lapola et al. (2010) also simulate possible indirect land-use changes resulting from the expansion of both sugarcane ethanol and soybean biodiesel in Brazil and estimate the potential carbon balance. They find that such changes are likely to off-set the carbon savings from biofuels.

None of these studies, however, provided any empirical evidence if and, if so how, expanding land allocated to sugarcane production might influence land-use change, specifically deforestation in the Amazon. Indirect land-use effects are assumed to materialize in all three studies via the displacement of cattle production to the forest frontier driven by the expansion of land allocated to sugarcane production elsewhere. Two recent papers by Barona et al. (2010) and Arima et al. (2011) are among the first attempts, to our knowledge, to establish empirical evidence for the possibility that land-use displacement in one area might be driving land-use change in another. Note, however, that unlike our paper, neither focuses on the potential indirect land-use effects of expanding land allocated to sugarcane production.

Barona et al. (2010) use Geographic Information System (GIS) methods and municipality-level statistics on land use across the Legal Amazon, between 2000 and 2006, to examine the spatial patterns and statistical relationships between deforestation and changes in pasture and soybean areas. Consistent with previous research, their results show that deforestation is predominantly a result of expanding pasture. They also offer limited support for the hypothesis that an increase in land allocated to soy in Mato Grosso has displaced pasture further north, leading to deforestation elsewhere. Yet, they were unable to establish causal links between land-use change in one place (in this case, soy replacing pasture) and change in another (pasture replacing forest). The spatial displacement of causality implies clear difficulties for the measurement of indirect land-use changes (see Babcock, 2009). Arima et
al. (2011) present a spatial regression model, which attempts to overcome this constraint. By incorporating spatial weights matrices, their model links the conversion of forest to pasture, to land-use change elsewhere in the Legal Amazon. They link deforestation specifically to the expansion of soy production in a settled agricultural area via a land “cascade” from the latter to the forest frontier. Deforestation between 2003 and 2008 is thus shown to be strongly related to soy expansion elsewhere. The largest indirect land-use effect is observed with the inclusion of a lagged soy variable to account for the possibility that displacement to frontier areas may take some time to occur. The effect is found to be “amplified in magnitude beyond a one-to-one replacement of new for old pastures” (p.3).

These studies on indirect land-use change naturally relate to the literature on deforestation drivers, although our analysis more explicitly considers such drivers. Pfaff (1999), Chomitz and Thomas (2003), and Andersen et al. (2002) highlight the role played by roads and credit facilities, among other factors as key drivers of deforestation in the Brazilian Amazon. Yet the studies by Barona et al. (2010) and Arima et al. (2011) share a key insight from some of the older literature on deforestation drivers, which is that forest conversion and land-use changes are phenomena that exhibit spatial patterns. Not only does forest conversion tend to concentrate around particular areas, such as roads and rivers, for instance, but there is also evidence that forest areas located close to conversion regions are under higher pressure (Pfaff, 1999; Chomitz and Thomas, 2003; Andersen et al., 2002). In a similar vein, certain agro-ecological conditions, infrastructure and zoning rules may result in a concentration of crops in some regions.¹ This result has led to a general increase in the use of spatial methods that can control for spatial auto-correlation in forest conversion decisions.

Spatial methods such as those used by Arima et al. (2011) are appropriate for the

¹For instance, Brazil’s national agronomy institute, EMBRAPA, has developed agro-ecological zones for different crops. These help determine the most productive regions (see www.embrapa.br). For sugarcane, this zoning has resulted in the banning of production in the Legal Amazon (EMBRAPA, 2009).
analysis of neighboring/contiguity effects (see also Anselin, 2009). However, they are not suitable for exploring possible links between the expansion of sugarcane in the south of Brazil with forest conversion in the Amazon. The former is situated thousands of kilometers from the latter (see Appendix A). The displacement of any agricultural activity due to the expansion of sugarcane could take a number of different forms, which are not observable in spatial data. Using spatial methods would require assuming a determined structure of displacement, which, if incorrect may lead to misleading results. Cattle displacement from the south of Brazil to the Amazon could have occurred in different ways. For example, there is evidence that from the 1970s onwards, numerous small- and medium-scale farmers sold their land in the south of Brazil and migrated to the Legal Amazon in order to take advantage of an abundance of cheaper land there (e.g. Schneider, 1992; Arima and Uhl, 1997; Margulis, 2004). In particular, cattle farmers in São Paulo state were observed to sell their land to sugarcane growers before migrating to the Amazon. Some migrated gradually over time while others moved more-or-less immediately to the forest frontier. In addition to farmers establishing new properties at the frontier, cattle farmers already operational in the Amazon may have increased the size of their herds, e.g. via purchases of cattle from the south, in response to supply shortfalls in São Paulo.

Historically, São Paulo state is where the majority of Brazilian sugarcane has been produced. We investigate the evidence for a possible mechanism linking sugarcane expansion in São Paulo and deforestation in the Amazon, that of cattle displacement from the former. Yet, the destination of displaced cattle cannot be shown. Given the difficulties of observing spatial causality in the data, causal links can only be shown first between head of cattle and deforestation in the Amazon and second, between sugarcane expansion and head of cattle in São Paulo state. Since a direct causal relationship cannot be established between sugarcane expansion in one area and deforestation in another, an indirect empirical link is established via changes in cattle herd size at the forest frontier.
To assess indirect land-use effects on deforestation due to sugarcane expansion, we apply the Arellano-Bover (1995)/Blundell-Bond (1998) System-GMM estimator to a panel dataset of Brazilian land uses, along with a number of other variables, spanning a 36-year period from 1970 to 2006. In dealing with potential endogeneity among the explanatory variables, this estimator ensures that efficient parameters’ estimates are obtained. Additionally, it supports the use of lagged values of the explanatory variables, which allows us to investigate the dynamic effects on forest conversion in the Amazon. Lagged interaction terms are utilized in order to separate out the direct effects of cattle ranching on deforestation from the indirect land-use effects of cattle ranching due to sugarcane expansion in the state of São Paulo.\(^2\)

Our results suggest a positive relationship between sugarcane expansion in São Paulo state and deforestation in the Amazon from 1970 to 2006. The impact of cattle ranching on forest conversion is found to be sensitive to the amount of land allocated to sugarcane in São Paulo state. This result holds even after controlling for other factors that drive deforestation. An indirect land-use effect is evidenced through the long-run marginal effects of cattle on deforestation, which suggest that a 10- to 15-year period was necessary for it to materialize. Although this result is suggestive of a displacement effect, it does not show whether cattle was displaced by sugarcane production in the first instance. To further probe this, two different reduced-form regressions are presented, both of which use the same dataset along with a fixed-effects panel estimator. We first find that increased areas of land allocated to sugarcane production in São Paulo is associated with a decline in cattle herd size in that state over the 1970-2006 period. Second, deforestation in the Amazon may be partially explained by numbers of head of cattle, which in turn are found to be positively correlated with past numbers of head of cattle in São Paulo.

\(^2\)Interaction terms were utilized, for similar purposes, by Lewis et al. (2009) to analyze the effects of open-space conservation policies on lakeshore development in Wisconsin. In considering the components that drive both the direct and indirect effects of zoning, for example, they interact zoning (lake-specific characteristic) with the amount of frontage on a parcel (parcel-specific characteristic).
2. Background

This section presents background information on the development and current status of the Brazilian ethanol market and on deforestation in the Brazilian Amazon. Our analysis is motivated by Brazil for a number of reasons. First, Brazil is currently the second largest global ethanol producer (MAPA, 2009), with large-scale production occurring for more than 20 years. This provides us with a sufficiently long time frame for investigating the dynamics of indirect land-use changes. Second, it hosts the largest part of the Amazon rainforest, which has registered relatively high levels of deforestation in the past. Relatively good, long-term data on land use are available for Brazil unlike many tropical forest countries. Additionally, Brazil is also a major global producer of several other agricultural commodities, in particular soybean and beef (World Bank, 2011). This is an important feature as it translates into many activities potentially being displaced by the expansion of sugarcane production. Finally, the main sugarcane production area is located far from the Amazon forest frontier. Since the notion of indirect land-use changes presupposes that the expanding land use is displacing other activities towards a different region, Brazil is an ideal laboratory for examining the possibility of these in the empirical record.

2.1 The Brazilian ethanol market

Ethanol production in Brazil began in the late 1970s with the beginning of the PróAlcool program. The aim of the program was to lower the country’s dependence on imported oil via public intervention. To stimulate production, PróAlcool was used to distribute subsidies to expand sugarcane production, construct distilleries and conduct public research on, for example, new sugarcane varieties. On the demand side, the government opted for fuel blending mandates, e.g. E85, which created domestic demand for ethanol. Although never officially terminated, the program’s subsidies were gradually withdrawn from 1998 onward.
and, to date, none remain. This period was nevertheless sufficiently long to develop a large, national ethanol market.

The new market resulted in the area under sugarcane increasing from 1.9 to 8.9 million hectares from 1975 to 2008. Associated production rose from around 89 to 589 million tons (MAPA, 2010). Most of this expansion, in both ethanol and sugarcane production, occurred in the central and southern region of Brazil, in particular São Paulo state. Approximately 70% of Brazilian sugarcane is currently produced in that state alone (UNICA, 2009). Ethanol production increased from about 0.6 million cubic meters in 1975, to 27.5 million cubic meters in 2009.

As reported by the World Bank (2011), almost all of the expansion of area under sugarcane in Brazil occurred on land that was already under agricultural and livestock production. Remote sensing data have been used to highlight spatial patterns in the allocation of Brazilian land use. With Landsat data, for example, Rudorff et al. (2010) show the results of direct land-use change in response to sugarcane planted in São Paulo state in 2007. For the entire state, 56.5% of the expanded sugarcane area occurred over pasture land with the remainder over agricultural land planted with annual crops. Scaling up for the entire country, the spatial patterns of pasture and sugarcane production between 1990 and 2006 can be seen in Appendix B. In the top set of maps, an increase in sugarcane area can be observed, particularly in São Paulo state and others in the Center-South region. The bottom set of maps indicates a general decline in livestock units in many of the same areas where sugarcane areas have expanded, and increases in areas to the north of São Paulo including the Amazon region. In sum, these maps are suggestive of the displacement of land allocated to cattle ranching as a consequence of the expansion of the area of land under sugarcane.

3Sugarcane production can also be measured in terms of Total Reducing Sugar (TRS) which is the final refined product that can be transformed into either sugar or ethanol. During the 2009/2010 season, of the total amount of TRS produced, 57% was devoted to ethanol. In 1975, the ethanol share was only 13%.

51 cubic meter is exactly equivalent to 1000 liters.
These huge increases in land area under sugarcane and ethanol production are both expected to continue apace, driven by national and international demand. In the national market, demand further increased after the introduction of flex-fuel cars, which are able to run with any blend of ethanol and gasoline. In 2008, 1.2 million of these vehicles were produced in the country.\footnote{Data available at http://www.unica.com.br/dadosCotacao/estatistica/} Regarding international demand, Brazil began exporting ethanol in 1989, although exports only reached significant amounts after 2004 (MAPA, 2010). By 2009, around 3.3 million cubic meters of Brazilian ethanol were exported (\textit{ibid}). The country expects exports to continue to rise with the decision of many European Union member-countries to introduce their own blending mandates in the coming years (REN, 2009).

\subsection*{2.2 Deforestation in the Brazilian Amazon}

Brazil hosts around 60\% of the Amazon rainforest. It corresponds to the North region of the country (\textit{Região Norte}) and includes the states of Acre, Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins, with an estimated surface area of 3.6 million square kilometers. Note that states are composed of numerous counties (\textit{municípios}), the third tier of government. The Legal Amazon, which is a larger area than the North region, is a geopolitical construct established by public authorities in 1966 for planning purposes (Andersen \textit{et al.}, 2002). Additional to the states mentioned above, it includes parts of Maranhão and Mato Grosso raising the total area to 5.2 million square kilometers, which corresponds to about 60\% of Brazilian territory.

In the 1960s, public credit and subsidies to agriculture coupled with road network development fostered migration to the Amazon (Rudel, 2005). Government programs promoting the occupation of the region were mainly thought of as means to develop the area and release demographic pressure from other parts of the country (Pfaff, 1999). The progressive occupation of the Legal Amazon has gradually changed deforestation patterns with cattle
ranching replacing timber exploitation as the main source of rents from forest conversion, from the 1970s onwards (Andersen et al., 2002). Indeed, IBGE data show that the size of the cattle herd in the Legal Amazon has increased from 6.5 million in 1970 to 55.4 million head of cattle by 2006. Annual forest loss in the Legal Amazon remained relatively stable at around 20,000 square kilometers in the 1970s and 1980s before ranging from 10,000 to 30,000 square kilometers during the 1990s. Table C.1 in Appendix C presents annual forest loss in the previous decade.\(^7\) Despite a sharp decline from the beginning to the end of the decade, forest loss in 2010 at approximately 6,450 square kilometers is comparable to observed amounts of deforestation in Indonesia (FAO, 2010). Much of this forest loss occurred in the states of Rondônia, Mato Grosso and Pará along the southern and eastern edges of the Amazon, the so-called “arc of deforestation” (Alves, 2002; Rudel, 2005).

3. The Conceptual Framework

We begin by following Pfaff’s (1999) land-use model which allows for many possible determinants of deforestation. The underlying theory behind this model is that farmers allocate land between alternative uses in order to maximize their returns. For simplicity, it is assumed that farmers at the forest frontier choose between two land uses \(l = \{c, u\}\), where \(c\) denotes cleared land put under agricultural production and \(u\) denotes uncleared land (i.e. where forests are kept standing). Therefore, at time \(t\), a plot of land \(j\) within county \(i\) is allocated to one of the alternative uses so as to maximize profit:

\[
\max \Pi^l_{ijt} = P^l_{ijt} Q^l_{ijt} (I^l_{ijt}) - W^l_{ijt} I^l_{ijt},
\]

where \(P^l_{ijt}\) are the plot level prices for the vector of alternative outputs from any given land use, \(Q^l_{ijt}\) is the vector of outputs, \(I^l_{ijt}\) is the vector of inputs used, and \(W^l_{ijt}\) are plot-level

prices for the vector of inputs.

The P_{ijt} and W_{ijt} plot-level output and input prices may not be observable in practice. These prices result from the realization of equilibria in broader markets, which are jointly determined by both local and non-local (e.g., regional, national, international) conditions. Therefore, we can consider P_{ijt} and W_{ijt} to be functions not only of local but also of non-local parameters. For instance, output prices may depend on local, national and international demand shifters such as population and transport costs. For the same reasons, input prices at the plot level depend not only on local market equilibria but also on the demand for these inputs in other regions. Therefore, we depart from Pfaff (1999) by considering

$$P_{ijt} = P_{ijt}(X_{it}, Z_{kt})$$

(2)

and

$$W_{ijt} = W_{ijt}(X_{it}, Z_{kt}),$$

(3)

where X_{it} is a vector of parameters defining local conditions at the forest frontier, i.e. in the $i = \{1, ..., n\}$ forest counties, (e.g., road infrastructure, soil fertility, population, credit received by producers) while Z_{kt} is a vector of parameters corresponding to the $k = \{n+1, ..., n+m\}$ counties that are not part of the standing forest area. This distinction of counties into forest and non-forest regions will serve our goal of testing whether land-use changes in non-forest regions may affect incentives to clear forest in the Amazon.

Assuming privately optimal input decisions under either land-use $l = \{c, u\}$, (1) yields

$$I_{ijt}^l = \arg \max \Pi_{ijt}^l = \Pi_{ijt}^l(P_{ijt}^l, W_{ijt}^l).$$

Combining this with (2) and (3), we define a value function $V_{ijt}^l \equiv \Pi_{ijt}^l(X_{it}, Z_{kt})$. Thus, normalizing a plot area to unity, total forest

\begin{footnote}{As is traditional in the literature on deforestation drivers, Pfaff (1999) only considers local parameters and parameters in neighboring counties.}
conversion in a given county \(i \), at a given time \(t \) is

\[
y_{it} = \sum_j I\{V_{ijt} > V_{ijt}'\}, \tag{4}
\]

where \(I\{V_{ijt} > V_{ijt}'\} \) is an indicator function.

Up to this point, we have assumed a static framework to render clear the role that changing conditions in non-forest areas play in determining forest conversion decisions. However, in practice, deforestation is a dynamic process in which changes to key factors occurring in previous periods are likely to have affected current conditions and, therefore, current decisions. For instance, areas that were previously partially cleared may be easier to access and deforest today. In the same vein, public policies such as subsidized credit lines or colonization programs may take a few years to impact deforestation. To account for these, we introduce lagged values of our parameters in the estimation. Thus, from (4) we derive the following linearized expression to be estimated:

\[
y_{it} = \hat{y}_{it} + \epsilon_{it}, \tag{5}
\]

where

\[
\hat{y}_{it} = \beta_0 + \beta_1 y_{i,t-s} + \beta_2 X_{i,t} + \beta_3 Z_{k,t} + \beta_4 Z_{k,t-s} + \beta_5 X_{i,t}Z_{k,t} + \beta_6 X_{i,t}Z_{k,t-s} + \mu_i, \tag{6}
\]

is the estimated amount of forest conversion at time \(t \) in county \(i \), \(s \geq 1 \) is the number of lags and \(\mu_i \) are county-specific unobservable fixed effects.

Obtaining consistent parameter estimates of (5) and (6) is challenging for two reasons. First, we consider our dependent variable to be dynamic in the sense that it depends on past realizations. Second, a number of the explanatory variables in \(X_{it} \) and \(Z_{kt} \) are unlikely to be strictly exogenous. Taken together, these suggest that obtaining consistent parameter
estimates necessitates the use of a generalized method of moments (GMM) dynamic estimator. More precisely, we use the Arellano-Bover (1995)/Blundell-Bond (1998) System-GMM estimator, which implies a transformation of the regressors, usually by taking differences, and the use of the lagged values of the dependent variable as instruments as well as initial conditions in the levels of the regressors.

At this point, one may ask why a simultaneous equations approach, i.e. jointly estimating the whole system of output supply and demand for inputs in forest areas, is not employed. We acknowledge that this approach is also valid. However, several reasons led us not to opt for it. First, since equation (4) is defined as a sum of indicator functions, the cross properties arising in a conventional supply/demand system would have been lost through the imposition of restrictions on the parameters of equation (6). Therefore, the simultaneous equations approach would not have enhanced the estimation’s results. Moreover, as stated earlier, we focus here on the dynamic aspect of indirect land-use change. Doing so using a simultaneous equations approach would have been less tractable than the one adopted in our analysis.

4. DATA SOURCES AND DESCRIPTION OF VARIABLES

For our empirical analysis we constructed a panel data set using secondary data for all of Brazil’s counties for the years 1970, 1975, 1980, 1985, 1995-96 and 2006. Since the structure of counties has changed during this time span, we aggregated the municipal data into 3,652 Minimum Comparable Areas9 (MCAs), 258 of which are within the Legal Amazon. These constitute our units of observation, \(i\), for our investigation of the drivers of deforestation in the Amazon (Section 5.1). \(\) São Paulo state comprises 567 MCAs, which constitute our units of observation for exploring the relationship between sugarcane area and cattle herd size in

9The list of Brazilian MCAs from 1970 to 2005 was provided by the Brazilian Institute of Applied Economic Research (\textit{Instituto de Pesquisa Econômica Aplicada, IPEA}).
those MCAs (Section 5.2).

While the Brazilian National Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística, IBGE) datasets are the only reliable source of information available for our purposes, they present some limitations. First, there may be a lack of precision with regards to the estimates of deforestation in cases where producers failed to make a direct declaration. This resulted in estimates having to be obtained indirectly from statements regarding land use in the various agricultural/cattle ranching properties. Also, the IBGE Census, in principle, includes all these properties in the Legal Amazon but fails to give information relating to publicly owned or unclaimed land. Deforestation, therefore, may be underestimated (Margulis, 2004). Additionally, the level of aggregation (MCA) may have led to less precise estimates of variables such as the distance to the state capital and road density. Finally, the gaps between censuses (five to ten years) can also lead to a loss of important dynamic information.

Tables D.1 and E.1 (see Appendices D and E), respectively, present a description of the main variables used in the analysis and offer some descriptive statistics.

4.1 Land use and land cover

Land-use data were obtained from IBGE’s agricultural censuses undertaken in 1970, 1975, 1980, 1985, 1995-1996\(^{10}\) and 2006. They include data on total land cleared, extent of natural

\(^{10}\)For the 1996 census, IBGE changed the reference as well as the data collection period. Data were collected in August 1996 instead of January as in previous censuses. Thus, officially, these data are not strictly comparable to those collected both in the previous and following censuses. Some scholars have argued that the apparent decrease in production and rural employment in 1996, when compared to the 1985 census, may have been due to this change in the data collection period. Since August corresponds to the end of the agricultural season in Brazil, most precarious establishments – i.e. temporary farms occupied by squatters, sharecroppers and land tenants that are only active during the agricultural season – may not have been properly identified (Helfand and Brunstein, 1999, cited in Andersen et al, 2002). However, some macroeconomic changes during the period 1985-1996, including the elimination of most agricultural subsidies in the late 1980s, may also partly explain these results (Andersen et al., 2002). Additionally, as long as the eventual undercount can be assumed to be randomly distributed among municipalities, it should not affect our econometric analysis (ibid). Following this line of reasoning, we opted to include the 1996 data in our analysis.
pasture and head of cattle. “Total land cleared” is defined by IBGE as the sum of land under perennial crops, annual crops, planted pasture, planted forests as well as long and short fallow land.11 Our dataset contains similar land-use data for all counties in Brazil, both including those in the Legal Amazon and in the state of São Paulo. For investigating evidence of indirect land-use effects on deforestation due to the expansion of land allocated to sugarcane production, we consider the number of hectares allocated to sugarcane in São Paulo state. As previously noted, this state accounts for the majority of Brazilian sugarcane and ethanol production.

4.2 Socioeconomic data

Data on the counties’ GDP, population and rural credit12 were obtained through IPEA.13 We used data on counties’ resident populations to compute GDP per capita and population density variables for our units of observation. Regarding roads, we were only able to obtain state level data using the \textit{Anuários Estatísticos do Brasil}, which were provided by IBGE. We used the total values, which included municipal, state and federal roads, both paved and unpaved. To obtain average MCA values we multiplied the state-level total kilometers of roads by the proportion of each MCA area relative to the state area.

11These data were used instead of satellite measures of deforestation for two main reasons. First, satellite data, such as those supplied by the Brazilian National Institute of Space Research (INPE, \textit{Instituto Nacional de Pesquisas Espaciais}), cover fewer points in time before 1988 compared to the survey data, e.g. data from INPE were only available for 1978, 1988, and annually thereafter. The survey data, by contrast, were collected at reasonably regular intervals when the Brazilian censuses took place. Second, IBGE data reflect net deforestation (i.e. gross deforestation minus secondary regrowth) while satellite data reflect gross deforestation (Anderson \textit{et al.}, 2002). Nevertheless, as noted earlier, we acknowledge that survey data may be more vulnerable to biases due to misreporting on the ground. See Anderson \textit{et al.} (2002) for a discussion of the different types of land cover data and how they compare.

12In our regressions we used “average credit received by farmers of a given MCA” as a control variable. This variable was computed by dividing, for each year, the total value of rural credit allocated in the MCA by the number of rural properties in that same MCA.

13Available at www.ipeadata.gov.br.
4.3 Geo-ecological data

Climate and soil characteristics have been shown to play a role in forest conversion. For instance, according to Chomitz and Thomas (2003) regions with higher rainfall are less appropriate for agriculture and thus less prone to forest conversion. We therefore include average annual precipitation for each MCA. Finally, we obtained data on average soil fertility of each municipality through shapefiles made available by IBGE. The fertility categories used are: very low (1); low (2); medium (3); medium-high (4); and, high (5) soil fertility. We adopted IBGE’s classification when aggregating information to the MCA level (by computing the average fertility value for all municipalities within a given MCA).

5. Empirical results

In this section, we investigate how land allocated to sugarcane in the state of São Paulo could be indirectly influencing patterns of deforestation in the Amazon, by adopting a twofold strategy.

First, in subsection 5.1, we test for the existence of an indirect link between sugarcane expansion in São Paulo state and forest conversion in the Amazon region. To that end, the dynamic equation presented in (5) and (6) is estimated using the Arellano-Bover (1995)/Blundell-Bond (1998) System-GMM estimator, and the two-step procedure is applied.\(^{14}\) Since the latter is known to yield biased standard errors we use the bias-corrected robust variance estimator developed by Windmeijer (2005), known as the WC-robust estimator. This allows us to obtain unbiased standard errors that also allow for heteroskedasticity in the errors.\(^{15}\) Along with the role played by sugarcane expansion, we also discuss the role

\(^{14}\)The regressions were also undertaken using the Difference-GMM estimator of Arellano and Bond (1991). Results were similar but less consistent across specifications. This can be explained by the fact that the System-GMM estimator, by using additional moment conditions, is a more precise estimator and has better finite sample properties (Cameron and Trivedi, 2009).

\(^{15}\)The system GMM estimator uses lags of the dependent variable as instruments. It is implemented using stata 11 xtdpdsys command (StataCorp., 2009).
of the more traditionally-considered drivers of deforestation, which are included as control variables in the regression analysis.

Second, using a fixed-effects estimator, subsection 5.2 examines further evidence for the displacement of cattle to the Amazon due to the expansion of sugarcane in São Paulo state. We first test the proposition, implicit in the remote sensing data described in Section 2, that sugarcane expansion in São Paulo occurred at the expense of cattle ranching activities before examining links between the size of cattle herds in São Paulo and the Amazon.

5.1 Sugarcane expansion in São Paulo and deforestation in the Amazon

The results are reported in Table 1 below. The dependent variable in all specifications is “hectares of cleared land in the Legal Amazon MCAs”. We focus on the dynamics of the problem. This recognizes, for instance, that the impact of sugarcane on deforestation may need “time to build” or that current deforestation depends on past deforestation. We thus begin with a simple specification where only head of cattle in the MCAs (cattle), current and lagged values of sugarcane acreage in the state of São Paulo (SPsgcn, L.SPsgcn and L2.SPsgcn) and a lagged-dependent variable are used as regressors (L.cleared) (see models 1 and 2). Additional explanatory variables are then included. In models 3 to 5, we sequentially include interaction terms between current head of cattle in the Legal Amazon MCAs and current and lagged values of sugarcane hectares in São Paulo state (SPsgcnCattle, L.SPsgcnCattle and L2.SPsgcnCattle). We provide the interpretation of the coefficients associated with these interaction terms below. Finally, in models 6 and 7 we include additional control variables, which capture some of the agricultural and socio-economic characteristics of the MCAs.\footnote{In the Arellano-Bover/Blundell-Bond approach, the error term ϵ_{it} is assumed to be serially uncorrelated, which implies that there should be no evidence of second-order correlation in $\Delta \epsilon_{it}$. This condition is essential to obtain consistent parameter estimates. Tests for second-order correlation are provided in Table F.2 of Appendix F. The null hypothesis of no serial autocorrelation is not rejected in any of the different specifications used, implying that the assumption of serially uncorrelated ϵ_{it} is supported by the data. An}
Head of cattle is treated as endogenous. The estimated coefficient is positive and statistically significant. As expected more cattle ranching in the Amazon is associated with more deforestation. This effect appears to be sensitive to sugarcane expansion (see below). Among the controls, road density (road_dens) is also treated as endogenous. This is in line with the existing literature. The decision to construct a new road or extend a preexisting one, especially when taken by state and/or municipal authorities, may be responding to local demand in already-cleared areas rather than resulting from exogenous decisions to “conquer” new territories (see Pfaff, 1999 and Andersen et al., 2002). The remaining control variables are hectares of natural pasture (natpast), GDP per capita (gdpcap), population density (pop_dens), average credit granted to farmers (credit), distance to the state capital (dist_state_cap), soil fertility (fertility), precipitation (precip), and area of MCA (area_ha - to control for the relative size of MCA). Moreover, in model 7 we include agricultural GDP in São Paulo (gdpagric_SP) to control for the possibility that the expansion of sugarcane could be proxying for general growth of agriculture in the state. This in turn could also be affecting land-use changes at the forest frontier. Table F.1 in Appendix F presents a correlation matrix for the variables used in these estimations.

[Insert Table 1 here]

5.1.1 The role of sugarcane

To investigate whether sugarcane expansion in the state of São Paulo affects forest conversion decisions in the Amazon we include current and lagged values of sugarcane hectares in the former as regressors, and interact them with the current size of cattle herds in the latter. This additional condition for the System-GMM estimator to produce consistent estimates is to use valid moment conditions. We can test whether the over-identifying moment conditions are valid by performing the Sargan test of over-identifying conditions, as discussed in Arellano and Bond (1991). However, since we use robust standard errors that deal with potential heteroskedasticity in the data, the Sargan test becomes baseless. We nevertheless perform it on non-robust versions of all the specifications. The null hypothesis of valid over-identifying restrictions is rejected for models 1-5 but not for models 6 and 7.
should capture the impact of sugarcane expansion on forest conversion that we hypothesize to materialize indirectly through a substitution of ranching activities away from São Paulo to the Amazon.

Looking at the results in Table 1 we first note the statistical significance of the majority of the lagged dependent variables. This suggests that the dynamic model is indeed appropriate. Regarding the coefficients associated with the interaction terms, we observe that these are consistent in terms of their relative size, sign, and degree of significance across specifications.17 We also note that the estimated coefficient for current sugarcane becomes significant once we include the full set of interactions. The coefficient of the interaction between head of cattle and sugarcane acreage lagged twice (L2.SPsgcnCattle) is positive, significant and stable irrespective of the specification considered. Note, however, that it becomes slightly less significant once the control variables are added in models 6 and 7. In contrast, both coefficients associated with the interaction terms between head of cattle and sugarcane acreage in current period (SPsgcnCattle) and sugarcane area lagged once (L.SPsgcnCattle) are no longer significant once the control variables are added.

Although insignificant, one may speculate what both a negative estimated coefficient of cattle interacted with contemporaneous sugarcane acreage and a large positive coefficient of cattle coefficient might indicate. We thus considered the possibility that, combined with the large positive coefficient on the size of the cattle herd, this negative coefficient might be suggestive of sugarcane expansion in São Paulo drawing capital away from forest conversion for cattle. To explore this possibility, we included the value of agricultural investments made by farmers both in the Legal Amazon MCAs as well as in the state of São Paulo, in model 7. These data were also obtained through IPEA and IBGE. The inclusion of agricultural investments has no effect on the sign, relative size or significance of any of the interaction

17Higher lags of sugarcane acreage were also included in the interaction terms but were not shown to have any significant impact on cleared land.
terms compared to the results for models 6 and 7, in Table 1. Hence, the possibility that
the expansion of sugarcane attracted capital from the Amazon region is not supported by
the data.

In general, the results for the interaction terms imply that the role played by head of cattle
in forest conversion is sensitive to the area of sugarcane in the state of S˜ ao Paulo in previous
years. They also suggest that in the absence of land allocated to sugarcane production, cattle
ranching would have had a smaller impact on land clearing in the Amazon. The adoption
of a dynamic model also allows us to distinguish between the long- and medium/short-run
effects of the variable of interest. We thus compute both the long- and medium/short-run
marginal effects of cattle on cleared land for models 6 and 7. The magnitude of these
effects in both models is similar.

The medium/short-run marginal effect is around three hectares of cleared land per addi-
tional unit of livestock. When the long-run effect is added to the medium/short-run effect,
the overall, marginal effect increases by about one-third to almost four hectares of cleared
land per additional head of cattle. So, the magnitude of deforestation due to cattle is higher
once the long-run marginal effects associated with sugarcane production are factored in.
These marginal effects may seem high at the first sight. Yet we note that they are consis-
tent with the more extensive ranching methods in the Brazilian Amazon compared to those
observed in S˜ ao Paulo state since 1970 (See Table G.1 in Appendix G).

Extensive practices have long been a feature of forest frontier expansion in the Amazon,
mainly due to the abundance of cheap land (e.g. White et al., 2001 and Rudel, 2005).
Pacheco (2012) describes how such practices tend to be practiced by medium- to large-
scale, relatively well-capitalized, landholders rather than smallholders farming less than 100

18Assuming a model of the kind $y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \beta_1 X_t + \beta_2 X_{t-1} + \delta_1 X_t Z_t + \delta_2 X_t Z_{t-1} + u_t$, the
marginal long-run effect of X on y is given by $(\beta_1 + \beta_2 + \delta_1 Z + \delta_2 Z)/(1 - \alpha_1 - \alpha_2)$, where Z is the mean
of Z across all observations and all years. Similarly, the short-run marginal effect of X on y is given by
$(\beta_1)/(1 - \alpha_1 - \alpha_2)$.

20
hectares of land. But how might the expansion of sugarcane in São Paulo be linked to the long-run marginal effect of cattle on deforestation in the Amazon? As noted in the introduction, farmers in the Amazon may have responded to supply shortfalls by expanding their herds. Since our results indicate an indirect land-use effect that materialized after 10 to 15 years, we might expect such a response to have occurred within a relatively shorter time frame.

A longer time frame, on the other hand, might be more plausibly explained by the phenomenon of farmers migrating from the south of Brazil to the forest frontier. Since the 1970s, much land previously utilized for cattle ranching in São Paulo state was purchased or taken over by sugarcane growers. Taking advantage of cheaper land in the Legal Amazon, southern cattle farmers either migrated spontaneously or were induced, for example, to participate in government colonization programs. Capital constraints, particularly in the 1980s and early 1990s, may have provided further incentives for farmers to sell their land in São Paulo and invest in the Amazon.19 Many were able to obtain proportionately more land than they owned in the south (Margulis, 2004). After a number of years, some of the same landowners sold out to better-capitalized landowners, possibly before migrating deeper into the forest (White et al., 2001). Alternatively, farmers may have migrated gradually from areas in the south of Brazil towards the Amazon. Either way, there may have been a substitution of cattle ranching activities, from being relatively more intensive (in São Paulo state) to less intensive (in forest frontier areas in the Amazon).20 Our data, however, do not allow us to further explore these different explanations for the indirect land-use effect.

In summary, the results for the coefficients associated with the interaction terms in Table 19

We thank one of the anonymous reviewers for this insight (see also, Margulis, 2004).

Note that larger, better-capitalized landowners may undertake more intensive cattle ranching activities instead of extensive ones (Margulis, 2004). This is, however, more likely to occur where land is less scarce, i.e. away from the forest frontier, in the more consolidated areas within the “arc of deforestation”. Indeed, state-level data from IBGE suggest that cattle stocking densities increase the further one moves away from the frontier.

21
1 are suggestive of an indirect effect of sugarcane expansion in São Paulo on deforestation in the Legal Amazon MCAs. The overall, marginal effect comprises both short- and long-run effects of cattle on deforestation in the Amazon. Through the interaction terms, the latter can be interpreted as an indirect effect of (past) sugarcane expansion on (current) deforestation. Such a delayed effect is consistent with the gradual substitution of cattle ranching away from the main sugarcane production areas in the south of Brazil to the Amazon frontier. Note, however, that the coefficients associated with the interaction terms are only suggestive about such a mechanism. More precisely, they identify an indirect land-use effect on deforestation as a consequence of sugarcane expansion, one that appears to materialize through cattle herd size at the forest frontier.

5.1.2 The traditional deforestation drivers

We include in the regression analysis factors that have been identified in the literature as key drivers of deforestation in the Brazilian Amazon. These are hectares allocated to natural pasture, road density, average amount of credit allocated to farmers, soil fertility, population density, precipitation, GDP per capita and distance to state capital (which can be interpreted as a proxy for access to markets). In our analysis these variables serve the purpose of control variables. In general, all of these factors are expected to exhibit a positive relationship with cleared land except for distance to state capital, which is expected to have a negative relationship with cleared land. As shown in Table 1, whenever significant, the coefficients associated with these regressors present the expected sign and are therefore in line with previous studies (e.g. Pfaff, 1999 and Andersen et al., 2002).

5.2 Additional evidence for displacement

In the previous subsection, we concentrated on documenting the impact of sugarcane expansion in São Paulo state on deforestation in the Legal Amazon. But precisely how cattle has
been displaced, thus affecting changes in size of cattle herds at the frontier, is not a question we can address with our dataset. Yet, irrespective of how displaced cattle materialize at the frontier, they would need to be displaced in the first instance, i.e. by a different land use. This possibility has, to some extent, been documented in the remote sensing data described in Section 2.1. They suggest a displacement in land use across Brazil over time. As the amount of land under sugarcane production expanded in the south of Brazil, the numbers of livestock in those same areas appeared to decline. At the same time, livestock numbers in the northern areas of the Center-South region along with areas of the Amazon appeared to rise.

To complement the findings of the remote sensing analyses and further probe the displacement hypothesis, we investigate whether similar patterns emerge in our dataset using two different approaches. A reduced form fixed-effects model associated with robust standard errors is adopted in both instances.

We first restrict our investigation to the possibility of a correlation between cattle herd size and sugarcane area in São Paulo state, between 1970 and 2006. A more comprehensive empirical model of the determinants of cattle herd size in the south is thus left for future work. “Number of head of cattle in São Paulo state’s MCAs” is the dependent variable. From Table H.1 in Appendix H, the coefficient associated with sugarcane area is negative and highly significant. In model A, head of cattle declines by 0.324 for each additional hectare of sugarcane. Hence, land allocated to sugarcane production in a given MCA is negatively correlated with the number of head of cattle in the same area.

Second, we implement two additional regressions to see if there is any evidence of a correlation between the size of cattle herds in the Legal Amazon and in São Paulo state. Specifically, we test whether the portion of the increase in numbers of head of cattle in the Amazon that is correlated with lagged values of numbers of head of cattle in São Paulo is
also associated with increased deforestation.\footnote{We thank one of the anonymous reviewers for suggesting this strategy.} We first run a fixed-effects regression between current numbers of cattle in the Legal Amazon MCA against lagged numbers of cattle in São Paulo. The fitted values are retained before being used as an explanatory variable in a second regression where deforestation is explained by these. Results, reported in Appendix H, show that there is a positive and statistically significant correlation between current numbers of cattle in the Amazon region and lagged numbers of cattle in São Paulo. This positive correlation suggests that the more cattle there were in São Paulo in the previous 10 to 20 years, the more prone these were to displacement by the expansion of sugarcane. Moreover, the fitted values are positively and significantly correlated with land clearing in the Amazon. We therefore find statistical evidence that deforestation in Amazon may be partially explained by numbers of cattle in the Amazon, which in turn are correlated with past numbers of cattle in São Paulo.

Together the results from these different approaches are consistent with the remote sensing evidence of a displacement of activities from the South to the North. They provide additional empirical support to the hypothesis that sugarcane expansion in São Paulo state displaced cattle ranching activities to other regions, including the Amazon.

6. Discussion and Conclusions

In this paper, we investigated indirect land-use changes induced by sugarcane expansion in Brazil. First, we found an indirect land-use effect of sugarcane expansion on deforestation, which is sensitive to the number of head of cattle in the Amazon. This is shown to be a long-run effect, which can be disentangled from the short-run, more direct effect of cattle ranching on deforestation. Although relatively small compared to the effect of the traditional deforestation drivers, the indirect effect imputable to displacement is not negligible and statistically significant. Second, land area under sugarcane is shown to be negatively
correlated with cattle herd size in São Paulo state. Also, deforestation in the Amazon may be explained by numbers of cattle in the Amazon that are in turn significantly, positively correlated with past numbers cattle in São Paulo. In sum, our results provide empirical support to the hypothesis that there has been a substitution of cattle ranching activities from the Center-South region towards the Amazon, as a result of sugarcane expansion. This spatial substitution, which we interpret as displacement, has contributed to the increase in cattle herd size in the Legal Amazon since 1970. We therefore argue that this is a channel through which sugarcane expansion during the 1970-2006 period influenced deforestation in the Brazilian Amazon.

The indirect land-use effect is shown to be dynamic with 10 to 15 years passing before it fully materializes. This relatively long time interval suggests that cattle ranching activities have shifted gradually between non-forest and forest regions. But how have such activities shifted across regions over time? From secondary sources, one plausible explanation concerns the documented movements of farmers and ranchers from sugarcane-growing areas to forest frontier areas in the Amazon (e.g. Schneider, 1992; Arima and Uhl, 1997 and Margulis, 2004). However, we neither know the identity nor observe the precise movements of such agents in our dataset. This limits further inference. Future work could collect detailed data describing precisely the origin and previous occupations of cattle ranchers in the Amazon along with the origin of cattle found at the forest frontier. More generally, it is not possible with our data to establish spatial causality between sugarcane expansion in the state of São Paulo and deforestation in the Amazon. Yet, our study is the first to provide empirical evidence that such a relationship between these two land uses might exist.

Since sugarcane is used as an energy crop for ethanol production in Brazil, our results contribute to the debate on the desirability of ethanol as an oil substitute. Under the assumption of no land-use change in supplying the biofuel feedstock, Gallagher (2008) demonstrates that the best greenhouse gas savings from ethanol, compared to gasoline, can be achieved
from sugarcane produced in Brazil. But as shown by Lapola et al. (2010), these savings begin to dissipate once the indirect effect on forest conversion is taken into account. We note, however, that their results are based on assumed and not observed parameter values. Given the abundance of land in Brazil, the effect calibrated by Lapola et al. (2010) may not be as severe as has been assumed. In other words, the displacement effect may have been overstated, at least for cattle displaced by the expansion of land under sugarcane production. While the estimation of the carbon balance of ethanol production in Brazil is beyond the scope of the present paper, our results suggest some possible directions for the design of future policies to promote biofuels.

The expansion of land under sugarcane in São Paulo at the expense of cattle ranching implies that the former could be mandated to be grown on idle land rather than land currently utilized by high-value agricultural commodities. In addition, investments in research aiming at increasing sugarcane productivity could be encouraged. The Brazilian Agriculture Research Corporation (EMBRAPA) in fact continues to undertake work in this direction. Another approach is to integrate cattle and sugarcane cultivation, one that has recently been piloted by Conservation International in São Paulo state (Conservation International, 2010). So far, it has not been shown to be profitable for a number of reasons including competition with other agricultural sectors for land and inputs.

Our results also have policy implications for areas in which the indirect land-use effect eventually materialized. It appears to be associated with more extensive cattle ranching at the forest frontier compared to ranching in São Paulo state where the effect originated. This suggests a role for the application of intensive technologies in the former. White et al. (2001) found, however, that forest scarcity is likely to be a prerequisite for technology intensification. This, of course, is unlikely to be the case at the forest frontier. Strong

\[^{22}\text{Note that this result depends on sugarcane yields and whether or not bagasse is utilized for heat and power (Gallagher, 2008).}\]
incentives might be necessary to induce the adoption of new technologies. At the same time, policies could be considered that make deforestation and extensive land uses less attractive for farmers. Policies that attempt to price the positive externalities of the Amazon forest, for example, along with the strengthening of property rights could help make deforestation more costly (see below).

The Brazilian government has plans to further expand its sugarcane/ethanol sector, in part to meet a projected rise in international demand for ethanol. However, the growing body of evidence for indirect land-use changes, in particular those that may induce higher levels of deforestation, challenge the received wisdom about the environmental benefits of ethanol production. Brazil is also fully engaged in putting into place various mechanisms that aim at reducing emissions from deforestation and forest degradation (REDD). Thus, future work could address the broader policy implications of indirect land-use change. For example, incentive payments that effectively price the carbon benefits of forests might make it less attractive for farmers to clear land. Thus, REDD could mitigate against indirect land-use effects, which may need to be taken into account in REDD baseline calculations. The results presented in this paper are a first step in accurately estimating the potential size of these effects.

With respect to policy, two final remarks are in order. First, with less cattle ranching concentrated in São Paulo today in comparison to the past, there may be fewer opportunities for displacement in the future. Second, given the 10-15 year period for displacement to materialize, the long-term monitoring of policy impacts would be necessary.
References

Barona, E. (2009) “Identifying the Role of Crop Production in Land Cover Change in Brazil, 1990-2006” mimeo, McGill University

Cameron, A.C. and P.K. Trivedi (2009) Microeconometrics using Stata Stata Press, College Station, Texas

EMBRAPA - Brazilian Agriculture Research Corporation (2009) “Zoneamento Agro-ecológico da Cana-de-açúcar”, Rio de Janeiro

StataCorp (2009) Stata Statistical Software: Release 11. College Station, TX: StataCorp LP.

Appendices

A Main sugarcane production areas in Brazil

[Insert Figure 1 here]

B Mapping of main cattle and sugarcane production areas in Brazil

[Insert Figure 2 here]
[Insert Figure 3 here]

C Deforestation in the Legal Amazon

[Insert Table C.1 here]

D Variables description

[Insert Table D.1 here]

E Descriptive statistics

[Insert Table E.1 here]

F Correlations and Tests

[Insert Table F.1 here]
[Insert Table F.2 here]
G Cattle stocking density in different regions of Brazil

[Insert Table G.1 here]

H Additional regressions - Fixed Effects models

[Insert Table H.1 here]
[Insert Table H.2 here]
[Insert Table H.3 here]
Figure 3-10. Change in spatial distribution of livestock in Brazil between 1990 and 2006. Maps illustrate total animal units in 1990; total animal units in 2006 and changes in animal units between 1990 and 2006 at the municipality level.
Figure 3-8. Change in spatial distribution of sugarcane harvested area in Brazil between 1990 and 2006.

(a) Total sugarcane harvested area in 1990, 2006, and change from 1990 to 2006 at the municipality level;
(b) same as (a), normalized by total harvested area of all crops.

Proportional change in Sugarcane harvested area, 1990-2006.
Table 1: Estimations' results

<table>
<thead>
<tr>
<th></th>
<th>model 1</th>
<th>model 2</th>
<th>model 3</th>
<th>model 4</th>
<th>model 5</th>
<th>model 6</th>
<th>model 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.cleared</td>
<td>0.930***</td>
<td>0.983***</td>
<td>0.790***</td>
<td>0.828***</td>
<td>0.752***</td>
<td>0.531***</td>
<td>0.501***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>L2.cleared</td>
<td>-0.158***</td>
<td>-0.113***</td>
<td>-0.105*</td>
<td>0.101</td>
<td>-0.0187</td>
<td>-0.0285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.032)</td>
<td>(0.181)</td>
<td>(0.732)</td>
<td>(0.562)</td>
<td></td>
</tr>
<tr>
<td>SPsgcn</td>
<td>-0.0116</td>
<td>-0.0238</td>
<td>0.0628</td>
<td>0.0867</td>
<td>0.0881*</td>
<td>0.102**</td>
<td>0.127*</td>
</tr>
<tr>
<td></td>
<td>(0.766)</td>
<td>(0.978)</td>
<td>(0.050)</td>
<td>(0.037)</td>
<td>(0.004)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>L.SPsgcn</td>
<td>-0.0229</td>
<td>0.00202</td>
<td>-0.157*</td>
<td>-0.137*</td>
<td>-0.170**</td>
<td>-0.174*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.739)</td>
<td>(0.032)</td>
<td>(0.037)</td>
<td>(0.004)</td>
<td>(0.018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2.SPsgcn</td>
<td>0.0435</td>
<td>0.0330</td>
<td>0.113***</td>
<td>0.110**</td>
<td>0.0367</td>
<td>0.0502*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.207)</td>
<td>(0.363)</td>
<td>(0.001)</td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.026)</td>
<td></td>
</tr>
<tr>
<td>SPsgcnCattle</td>
<td>-0.000000237***</td>
<td>-0.00000154*</td>
<td>-0.00000156*</td>
<td>-0.00000116</td>
<td>-0.00000119</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.013)</td>
<td>(0.027)</td>
<td>(0.146)</td>
<td>(0.095)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSPsgcnCattle</td>
<td>0.000000171*</td>
<td>3.83e-08</td>
<td>0.000000353</td>
<td>0.000000486</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.971)</td>
<td>(0.711)</td>
<td>(0.598)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2SPsgcnCattle</td>
<td>0.00000219***</td>
<td>0.00000111*</td>
<td>0.000000993*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.025)</td>
<td>(0.012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>road_dens</td>
<td>29179.4</td>
<td>615996.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.913)</td>
<td>(0.093)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>natpast</td>
<td>0.171*</td>
<td>0.189**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdp_cap</td>
<td>-1.072</td>
<td>-0.736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.208)</td>
<td>(0.590)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pop_dens</td>
<td>8.927</td>
<td>8.308</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.265)</td>
<td>(0.098)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>credit</td>
<td>0.00000107***</td>
<td>0.000012***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist_state_cap</td>
<td>44.98</td>
<td>101.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.881)</td>
<td>(0.674)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>area_ha</td>
<td>0.0119</td>
<td>0.0177*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertility</td>
<td>-44731.4</td>
<td>-51494.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.511)</td>
<td>(0.403)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>precip</td>
<td>102.1</td>
<td>(0.085)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.148)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdpagric_SP</td>
<td>-0.00116</td>
<td>0.00012***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>19015.0</td>
<td>22449.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.063)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1032</td>
<td>1032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.064)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chi2</td>
<td>52927.2</td>
<td>52927.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.063)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-values in parentheses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05 ** p < 0.01 *** p < 0.001
Table C.1: Deforestation in Legal Amazon States (square kilometers, 2000-2010)

<table>
<thead>
<tr>
<th>States/Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre</td>
<td>547</td>
<td>419</td>
<td>883</td>
<td>1078</td>
<td>728</td>
<td>592</td>
<td>398</td>
<td>184</td>
<td>254</td>
<td>167</td>
<td>273</td>
</tr>
<tr>
<td>Amazonas</td>
<td>612</td>
<td>634</td>
<td>885</td>
<td>1558</td>
<td>132</td>
<td>775</td>
<td>788</td>
<td>610</td>
<td>604</td>
<td>405</td>
<td>474</td>
</tr>
<tr>
<td>Amapá</td>
<td>7</td>
<td>0</td>
<td>25</td>
<td>46</td>
<td>33</td>
<td>30</td>
<td>39</td>
<td>100</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maranhão</td>
<td>1065</td>
<td>958</td>
<td>1085</td>
<td>993</td>
<td>755</td>
<td>922</td>
<td>674</td>
<td>631</td>
<td>1271</td>
<td>828</td>
<td>679</td>
</tr>
<tr>
<td>Mato Grosso</td>
<td>6369</td>
<td>7703</td>
<td>7892</td>
<td>10405</td>
<td>11814</td>
<td>7145</td>
<td>4333</td>
<td>2678</td>
<td>3258</td>
<td>1049</td>
<td>828</td>
</tr>
<tr>
<td>Pará</td>
<td>6671</td>
<td>5237</td>
<td>7510</td>
<td>7145</td>
<td>8870</td>
<td>5899</td>
<td>5659</td>
<td>5526</td>
<td>5607</td>
<td>4281</td>
<td>3710</td>
</tr>
<tr>
<td>Rondônia</td>
<td>2465</td>
<td>2673</td>
<td>3099</td>
<td>3597</td>
<td>3858</td>
<td>3244</td>
<td>2049</td>
<td>1611</td>
<td>1136</td>
<td>482</td>
<td>427</td>
</tr>
<tr>
<td>Roraima</td>
<td>253</td>
<td>345</td>
<td>84</td>
<td>439</td>
<td>311</td>
<td>133</td>
<td>231</td>
<td>309</td>
<td>574</td>
<td>121</td>
<td>0</td>
</tr>
<tr>
<td>Tocantins</td>
<td>244</td>
<td>189</td>
<td>212</td>
<td>156</td>
<td>158</td>
<td>271</td>
<td>124</td>
<td>63</td>
<td>107</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>Legal Amazon</td>
<td>18226</td>
<td>18165</td>
<td>21651</td>
<td>25396</td>
<td>27772</td>
<td>19014</td>
<td>14286</td>
<td>11651</td>
<td>12911</td>
<td>7464</td>
<td>6451</td>
</tr>
<tr>
<td>Variable</td>
<td>Definition</td>
<td>Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cleared</td>
<td>Hectares of land cleared</td>
<td>IBGE - Agricultural Census</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cattle</td>
<td>Number of head of cattle</td>
<td>IBGE - Agricultural Census</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPsgcn</td>
<td>Hectares of land under sugarcane in São Paulo state</td>
<td>IBGE - Agricultural Census</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>natpast</td>
<td>Hectares of natural pasture</td>
<td>IBGE - Agricultural Census</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdpcap</td>
<td>GDP per capita (R$ of 2000)</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pop_dens</td>
<td>Population density (Total MCA population/MCA area)</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>road_dens</td>
<td>Road density (km of road within MCA/MCA area)</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>credit</td>
<td>Average credit allocated to rural establishments (R$ of 2000)</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>area_ha</td>
<td>MCA surface in hectares</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist_state_cap</td>
<td>Average distance from counties’ capital (within a given MCA) to the state capital in km</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdpagric_SP</td>
<td>Value added of agricultural activities in São Paulo (R$ of 2000)</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertility</td>
<td>Categorial variable. 1=very low, 2=low, 3=medium, 4=medium/high, 5=high</td>
<td>GIS data from IBGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>precip</td>
<td>Average yearly precipitations in milliliters</td>
<td>IPEAdata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E.1: Descriptive statistics of main variables

<table>
<thead>
<tr>
<th>variable</th>
<th>mean</th>
<th>max</th>
<th>min</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>cleared</td>
<td>39957.71</td>
<td>9286486</td>
<td>0</td>
<td>159668.8</td>
</tr>
<tr>
<td>cattle</td>
<td>34178.45</td>
<td>8016933</td>
<td>0</td>
<td>138857.3</td>
</tr>
<tr>
<td>SPsgcn</td>
<td>1671501</td>
<td>3498240</td>
<td>524139</td>
<td>1051666</td>
</tr>
<tr>
<td>natpast</td>
<td>27596.94</td>
<td>4594066</td>
<td>0</td>
<td>118775.4</td>
</tr>
<tr>
<td>gdpcap</td>
<td>3485.831</td>
<td>823211.5</td>
<td>0</td>
<td>10832.85</td>
</tr>
<tr>
<td>pop_dens</td>
<td>98.32099</td>
<td>201954.5</td>
<td>0</td>
<td>1468.494</td>
</tr>
<tr>
<td>road_dens</td>
<td>0.463128</td>
<td>1.309967</td>
<td>0.001284</td>
<td>0.23718</td>
</tr>
<tr>
<td>credit</td>
<td>1.01E+10</td>
<td>4.72E+12</td>
<td>0</td>
<td>7.60E+10</td>
</tr>
<tr>
<td>dist_state_cap</td>
<td>249.1717</td>
<td>1476</td>
<td>0</td>
<td>150.8784</td>
</tr>
<tr>
<td>area_ha</td>
<td>233225.4</td>
<td>3.67E+07</td>
<td>0</td>
<td>1431832</td>
</tr>
<tr>
<td>fertility</td>
<td>1.97E+00</td>
<td>5.00E+00</td>
<td>1</td>
<td>0.9433757</td>
</tr>
<tr>
<td>precip</td>
<td>1332.686</td>
<td>3389</td>
<td>346</td>
<td>423.875</td>
</tr>
<tr>
<td>gdpagric_SP</td>
<td>1.10E+07</td>
<td>1.72E+07</td>
<td>6439376</td>
<td>3584624</td>
</tr>
</tbody>
</table>
Table F.1: Correlation matrix among variables

<p>| | cleared | L.cleared | L2.cleared | cattle | SPsgcn | L.SPsgcn | L2.SPsgcn | SPsgcnCattle | LSPsgcnCattle | natpast | gdpcap | pop | dens | credit | road | state | area | fertility | precip | gdpagric | SP |
|---------|---------|-----------|------------|---------|--------|----------|-----------|--------------|--------------|---------|--------|-----|------|--------|------|-------|------|-----------|--------|----------|
| cleared | 1.000 | | | | | | | | | | | | | | | | | | | |
| L.cleared | 0.953 | 1.000 | | | | | | | | | | | | | | | | | | |
| L2.cleared | 0.957 | 0.933 | 1.000 | | | | | | | | | | | | | | | | | |
| cattle | 0.999 | 0.836 | 0.717 | 1.000 | | | | | | | | | | | | | | | | |
| SPsgcn | 0.069 | 0.094 | 0.112 | 0.132 | 1.000 | | | | | | | | | | | | | | | |
| L.SPsgcn | 0.069 | 0.093 | 0.113 | 0.133 | 0.999 | 1.000 | | | | | | | | | | | | | | |
| L2.SPsgcn | 0.968 | 0.099 | 0.129 | 0.133 | 0.988 | 0.991 | 1.000 | | | | | | | | | | | | | |
| SPsgcnCattle | 0.836 | 0.788 | 0.694 | 0.983 | 0.168 | 0.160 | 0.172 | 1.000 | | | | | | | | | | | | |
| LSPsgcnCattle | 0.830 | 0.782 | 0.689 | 0.981 | 0.171 | 0.172 | 0.175 | 1.000 | 1.000 | | | | | | | | | | | |
| L2SPsgcnCattle | 0.820 | 0.773 | 0.679 | 0.975 | 0.171 | 0.172 | 0.177 | 0.999 | 0.999 | 1.000 | | | | | | | | | | |
| natpast | 0.668 | 0.642 | 0.564 | 0.439 | -0.026 | -0.026 | -0.029 | 0.327 | 0.317 | 0.308 | 1.000 | | | | | | | | | |
| gdpcap | 0.143 | 0.142 | 0.134 | 0.119 | 0.050 | 0.054 | 0.112 | 0.111 | 0.111 | 0.109 | 0.100 | | | | | | | | | |
| pop | -0.050 | -0.049 | -0.048 | -0.042 | 0.027 | 0.026 | 0.028 | -0.036 | -0.035 | -0.044 | 0.027 | 1.000| | | | | | | | |
| credit | 0.642 | 0.684 | 0.691 | 0.519 | 0.132 | 0.134 | 0.145 | 0.520 | 0.520 | 0.521 | 0.433 | 0.271 | -0.008 | 1.000 | | | | | | |
| road | -0.058 | -0.036 | -0.013 | -0.058 | 0.061 | 0.063 | 0.063 | -0.048 | -0.047 | -0.067 | -0.182 | 0.019 | -0.039 | 1.000 | | | | | | |
| area | 0.356 | 0.480 | 0.426 | 0.472 | -0.012 | -0.013 | -0.012 | 0.421 | 0.416 | 0.416 | 0.378 | 0.204 | -0.090 | 0.225 | -0.308 | 0.136 | 1.000 | | |
| fertility | 0.027 | 0.001 | -0.020 | 0.066 | -0.023 | -0.023 | -0.023 | 0.066 | 0.065 | 0.015 | -0.050 | -0.049 | -0.401 | 0.138 | 0.127 | 1.000 | | | |
| precip | -0.101 | -0.116 | -0.125 | -0.078 | -0.066 | -0.057 | -0.054 | -0.067 | -0.066 | -0.084 | 0.023 | 0.121 | -0.080 | -0.746 | 0.231 | 0.122 | 0.235 | 1.000 | | |
| gdpagric | -0.034 | -0.026 | -0.005 | -0.082 | -0.485 | -0.519 | -0.613 | -0.113 | -0.116 | -0.122 | 0.030 | -0.022 | -0.016 | -0.131 | -0.032 | 0.013 | 0.006 | 0.012 | 0.028 | 1.000 |</p>
<table>
<thead>
<tr>
<th>Arellano-Bond test of second-order auto-correlation</th>
<th>model 1</th>
<th>model 2</th>
<th>model 3</th>
<th>model 4</th>
<th>model 5</th>
<th>model 6</th>
<th>model 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>z=1.111 (p=0.266)</td>
<td>z=1.264 (p=0.206)</td>
<td>z=-0.915 (p=0.360)</td>
<td>z=-0.846 (p=0.398)</td>
<td>z=0.923 (p=0.359)</td>
<td>z=0.923 (p=0.356)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table G.1: Cattle density (Head of cattle/ha)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>São Paulo</td>
<td>1.00</td>
<td>1.00</td>
<td>1.15</td>
<td>1.13</td>
<td>1.41</td>
<td>1.85</td>
</tr>
<tr>
<td>Legal Amazon</td>
<td>0.27</td>
<td>0.31</td>
<td>0.39</td>
<td>0.44</td>
<td>0.74</td>
<td>1.04</td>
</tr>
<tr>
<td>Cerrado</td>
<td>0.44</td>
<td>0.56</td>
<td>0.62</td>
<td>0.69</td>
<td>0.83</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Table H.1: Dependent variable: Head of cattle in São Paulo municipalities

<table>
<thead>
<tr>
<th></th>
<th>model A</th>
</tr>
</thead>
<tbody>
<tr>
<td>sgcni</td>
<td>-0.324***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>cons</td>
<td>20521.3***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td>3402</td>
</tr>
<tr>
<td>chi2</td>
<td></td>
</tr>
</tbody>
</table>

*p-values in parentheses

* p < 0.05 ** p < 0.01 *** p < 0.001
Table H.2: Dependent variable: Head of cattle (current) in the Legal Amazon municipalities

<table>
<thead>
<tr>
<th></th>
<th>model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.SPcattle</td>
<td>0.149***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
<tr>
<td>L2.SPcattle</td>
<td>0.282***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>cons</td>
<td>-4905984.7***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
<tr>
<td>N</td>
<td>1032</td>
</tr>
<tr>
<td>chi2</td>
<td></td>
</tr>
</tbody>
</table>

p-values in parentheses

* * p < 0.05 ** p < 0.01 *** p < 0.001
Table H.3: Dependent variable: Hectares of cleared land in the Legal Amazon municipalities

<table>
<thead>
<tr>
<th></th>
<th>model C</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitted_cattle</td>
<td>0.533**</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>_cons</td>
<td>87087.2***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>N</td>
<td>1032</td>
</tr>
<tr>
<td>chi2</td>
<td></td>
</tr>
</tbody>
</table>

p-values in parentheses

* $p < 0.05$
** $p < 0.01$
*** $p < 0.001$
Working Papers of the Center of Economic Research at ETH Zurich

(PDF-files of the Working Papers can be downloaded at www.cer.ethz.ch/research).

13/170 S. Andrade de Sa, C. Palmer and S. Di Falco
Dynamics of Indirect Land-Use Change: Empirical Evidence from Brazil

12/169 L. Leinert
Does the Oil Price Adjust Optimally to Oil Field Discoveries?

12/168 F. Lechthaler and L. Leinert
Moody Oil - What is Driving the Crude Oil Price?

12/167 L. Bretschger, R. Ramer and L. Zhang
Economic effects of a nuclear phase-out policy: A CGE analysis

12/166 L. Bretschger and N. Suphaphiphat
Use Less, Pay More: Can Climate Policy Address the Unfortunate Event for Being Poor?

12/165 P. S. Schmidt and T. Werner
Verified emissions and stock prices: Is there a link? - An empirical analysis of the European Emission Trading Scheme

12/164 H. Gersbach, S. Imhof and O. Tejada
Channeling the Final Say in Politics

12/163 J. Daubanes and L. Leinert
Optimum Tariffs and Exhaustible Resources: Theory and Evidence for Gasoline

12/162 C. N. Brunnschweiler, C. Jennings and I. A. MacKenzie
Rebellion against Reason? A Study of Expressive Choice and Strikes

12/161 A. Lange and A. Ziegler
Offsetting versus Mitigation Activities to Reduce CO2 Emissions: A Theoretical and Empirical Analysis for the U.S. and Germany

12/160 L. Bretschger and F. Lechthaler
Common Risk Factors and the Macroeconomy: New Evidence from the Japanese Stock Market

12/159 H. Gersbach and Q. Oberpriller
Rules vs. Targets: Climate Treaties under Uncertainty

12/158 H. Gersbach and O. Ponta
Unraveling Short- and Farsightedness in Politics
12/157 A. Bommier and F. Le Grand
Too Risk Averse to Purchase Insurance? A Theoretical Glance at the Annuity Puzzle

12/156 I. A. MacKenzie and M. Ohndorf
Restricted Coasean Bargaining

11/155 A. Bommier
Life-Cycle Preferences Revisited

11/154 C. N. Brunnschweiler and S. Valente
International Partnerships, Foreign Control and Income Levels: Theory and Evidence

11/153 R. Ramer
Dynamic Effects and Structural Change under Environmental Regulation in a CGE Model with Endogenous Growth

11/152 I. A. MacKenzie and M. Ohndorf
Optimal Monitoring of Credit-based Emissions Trading under Asymmetric Information

11/151 J. Daubanes and P. Lasserre
Optimum Commodity Taxation with a Non-Renewable Resource

11/150 A. Schäfer and M. T. Schneider
Endogenous Enforcement of Intellectual Property, North-South Trade, and Growth

11/149 H. Gersbach and V. Hahn
Inflation Forecast Contracts

11/148 D. Schiess and R. Wehrli
Long-Term Growth Driven by a Sequence of General Purpose Technologies

11/147 P. F. Peretto and S. Valente
Growth on a Finite Planet: Resources, Technology and Population in the Long Run

11/146 H. Gersbach, N. Hummel and R. Winkler
Sustainable Climate Treaties

11/145 H. Gersbach and H. Haller
A Human Relations Paradox

11/144 L. Bretschger and S. Valente
International Trade and Net Investment: Theory and Evidence

11/143 H. Gersbach
Campaigns, Political Mobility, and Communication
11/142 J. G. Becker
 On the Number of α-Pivotal Players

 On the Construction of Common Size, Value and Momentum Factors in International
 Stock Markets: A Guide with Applications

10/140 L. Leinert
 How do unanticipated discoveries of oil fields affect the oil price?

10/139 H. Gersbach, M. T. Schneider and O. Schneller
 Basic Research, Openness, and Convergence

10/138 L. Bretschger and V. Kappel
 Market concentration and the likelihood of financial crises

10/137 M. T. Schneider and R. Winkler
 Growth and Welfare under Endogenous Lifetime

10/136 V. Hahn
 Sequential Aggregation of Verifiable Information

10/135 A. Bommier, M.-L. Leroux and J.-M. Lozachmeur
 On the Public Economics of Annuities with Differential Mortality

10/134 A. Bommier, A. Chassagnon and F. Le Grand
 Comparative Risk Aversion: A Formal Approach with Applications to Saving Behaviors

10/133 A. Bommier and B. Villeneuve
 Risk Aversion and the Value of Risk to Life

10/132 L. Bretschger and S. Valente
 Endogenous Growth, Asymmetric Trade and Resource Taxation

10/131 H. Gersbach and N. Surulescu
 Default Risk in Stochastic Volatility Models

10/130 F. Schwark
 Economics of Endogenous Technical Change in CGE Models - The Role of Gains from Specialization

10/129 L. Bretschger, R. Ramer and F. Schwark
 Long-Run Effects of Post-Kyoto Policies: Applying a Fully Dynamic CGE model
 with Heterogeneous Capital

10/128 M. T. Schneider, C. Traeger and R. Winkler
 Trading Off Generations: Infinitely-Lived Agent Versus OLG